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1 Introduction
We propose to facilitate cooperation / competition between agents in a multi-agent RL

(MARL) setting by encouraging agents to signal / hide their intentions. In the setting we
consider, the first agent has access to the goal information and seeks to maximize its own
reward, along with an information-theoretic regularizer meant to encourage its behavior to
either reveal or hide the private information it has about the goal. A second agent is then
trained to maximize its own reward only from observations of the first agent. This second
agent does not have access to the goal information and must thus infer the goal from the
actions of the first agent who does. The advantage of our approach is that the first agent
can be trained without a model of nor interaction with the second agent.

2 Regularizing policies with information
In a typical (multi-goal) RL setup, an agent seeks to maximize its expected reward E[r],

where the expectation is taken over episodes, goals, time, the dynamics of the environment,
and the agent’s policy. It is common to add auxiliary losses, such as the entropy of the
policy to encourage exploration [Mnih et al., 2016], or pixel prediction/control to encourage
exploration in the face of sparse rewards [Jaderberg et al., 2016]. Here we propose to add
the mutual information between goal and action (conditioned on state), I(A;G | S), where
G is the goal for the episode, A is the chosen action, and S is the state of the agent. That
is, we will train agents to optimize the loss:

L = −E[r] + βI(A;G | S) , (1)

where β is a tradeoff parameters whose sign determines whether we want our agents to
signal (negative) or hide (positive) their intentions, and whose magnitude determines the
relative preference for rewards and intention signalling/hiding.

The information I(A;G | S) is a functional of the multi-goal policy πg(a | s) = p(a | s, g),
that is the probability distribution over actions given the current goal and state, and is given
by:
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I(A;G | S) =
∑
s

p(s) I(A;G | S = s) (2)

=
∑
s

p(s)
∑
a,g

p(a, g | s) log p(a, g | s)
p(a | s) p(g | s)

. (3)

It will be useful to rewrite the above into a form in which the dependence on the policy is
explicit and the sums are over episodes, so that we can estimate and optimize from samples.
Rewriting p(a, g | s) inside the log as p(a, g | s) = p(a | s, g) p(g | s) = πg(a | s) p(g | s) and
cancelling the p(g | s) in the numerator and denominator, we have:

I(A;G | S) =
∑
s

p(s)
∑
a,g

p(a, g | s) log πg(a | s)
p(a | s)

. (4)

Noting that p(a, g | s) p(s) = p(g) p(s | g) p(a | s, g) = p(g) p(s | g) πg(a | s), we can rear-
range the terms outside the log to arrive at:

I(A;G | S) =
∑
g

p(g)
∑
s

p(s | g)
∑
a

πg(a | s) log
πg(a | s)
p(a | s)

. (5)

At this point, we can see that the quantity involving the sum over actions is a KL diver-
gence between two distributions: the goal-dependent policy πg(a | s) and a goal-independent
policy p(a | s). This goal-independent policy comes from marginalizing out the goal, that is
p(a | s) =

∑
g p(g) πg(a | s). Whye Teh et al. [2017] independently introduced this regularizer

(without noting the connection to the mutual information) for an alternative reason - they
wanted to encourage an agent to transfer knowledge between tasks (goals). To maintain
consistently with their notation, we will denote π0(a | s) ≡ p(a | s) and refer to it as the
“base policy,” whereas we will refer to πg(a | s) as simply the “policy.” Thus, we can rewrite
the information above as:

I(A;G | S) =
∑
g

p(g)
∑
s

p(s | g)KL[πg(a | s) | π0(a | s)] . (6)

Writing the information this way suggests a method for stochastically optimizing it. First,
we sample a goal g from p(g), that is we initialize an episode of some task. Next, we sample
states s from p(s | g), that is we generate state trajectories using our policy πg(a | s). For
each step of the trajectory, we take the gradient of the KL with respect our policy πg(a | s)
and adjust the policy in that direction.

While there are many approaches to maximizing expected reward, because the information
is a functional of the policy and we wish to simultaneously optimize rewards and information,
it will be most natural to take a policy gradient approach. That is, the gradient of our loss
(with respect to policy parameters θ) at time step t in an episode with goal g will given by:
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∇θLt = (∇θ log πg(at | st))Rt + β∇θKL[πg(at | st) | π0(at | st)] , (7)

where Rt =
∑T

τ=t γ
τ−trt is the discounted return, T is the length of the episode, γ the

discount factor, and rt the reward at time step t. By using the actual episode return Rt, we
are assuming finite episodes and taking an approach known as the REINFORCE algorithm
[Williams, 1992]. However, one could replace Rt with an estimated return such as a learned
Q-value Q(st, at).

In summary, the implementation of our approach simply involves adding β∇θKL to the
policy gradient in a standard implementation of REINFORCE.
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