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Lossy compression and clustering fundamentally involve a decision
about which features are relevant and which are not. The information
bottleneck method (IB) by Tishby, Pereira, and Bialek (1999) formalized
this notion as an information-theoretic optimization problem and pro-
posed an optimal trade-off between throwing away as many bits as pos-
sible and selectively keeping those that are most important. In the IB,
compression is measured by mutual information. Here, we introduce an
alternative formulation that replaces mutual information with entropy,
which we call the deterministic information bottleneck (DIB) and argue
better captures this notion of compression. As suggested by its name, the
solution to the DIB problem turns out to be a deterministic encoder, or
hard clustering, as opposed to the stochastic encoder, or soft clustering,
that is optimal under the IB. We compare the IB and DIB on synthetic
data, showing that the IB and DIB perform similarly in terms of the IB
cost function, but that the DIB significantly outperforms the IB in terms
of the DIB cost function. We also empirically find that the DIB offers a
considerable gain in computational efficiency over the IB, over a range
of convergence parameters. Our derivation of the DIB also suggests a
method for continuously interpolating between the soft clustering of the
IB and the hard clustering of the DIB.

1 Introduction

Compression is a ubiquitous task for humans and machines alike (Cover &
Thomas, 2006; MacKay, 2002). For example, machines must turn the large
pixel grids of color that form pictures into small files capable of being shared
quickly on the web (Wallace, 1991), humans must compress the vast stream
of ongoing sensory information they receive into small changes in the brain
that form memories (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth,
2013), and data scientists must turn large amounts of high-dimensional
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and messy data into more manageable and interpretable clusters (MacKay,
2002).

Lossy compression involves an implicit decision about what is relevant
and what is not (Cover & Thomas, 2006; MacKay, 2002). In the example of
image compression, the algorithms we use deem some features essential
to representing the subject matter well, and others are thrown away. In
the example of human memory, our brains deem some details important
enough to warrant attention, and others are forgotten. And in the example
of data clustering, information about some features is preserved in the
mapping from data point to cluster ID, while information about others is
discarded.

In many cases, the criterion for “relevance” can be described as infor-
mation about some other variable(s) of interest. We call X the signal we
are compressing, T the compressed version, Y the other variable of interest,
and I(T;Y) the “information” that T has about Y (we formally define this
later). For human memory, X is past sensory input, T the brain’s internal
representation (e.g., the activity of a neural population, or the strengths
of a set of synapses), and Y the features of the future environment that
the brain is interested in predicting, such as extrapolating the position of a
moving object. Thus, I(T;Y) represents the predictive power of the mem-
ories formed (Palmer, Marre, Berry, & Bialek, 2015). For data clustering, X
is the original data, T is the cluster ID, and Y is the target for prediction
(e.g., purchasing or ad-clicking behavior in a user segmentation problem).
In summary, a good compression algorithm can be described as a trade-off
between the compression of a signal and the selective maintenance of the
relevant bits that help predict another signal.

This problem was formalized as the information bottleneck (IB)
by Tishby, Pereira, and Bialek (1999). Their formulation involved an
information-theoretic optimization problem and resulted in an iterative soft
clustering algorithm guaranteed to converge to a local (though not neces-
sarily global) optimum. In their cost functional, compression was measured
by the mutual information I(X; T ). This compression metric has its origins
in rate-distortion theory and channel coding, where I(X; T ) represents the
maximal information transfer rate, or capacity, of the communication chan-
nel between X and T (Cover & Thomas, 2006).1 While this approach has its
applications, often one is more interested in directly restricting the amount
of resources required to represent T, quantified by the entropy H(T ). This
latter notion comes from the source coding literature and implies a restric-
tion on the representational cost of T (Cover & Thomas, 2006). In the case
of human memory, for example, H(T ) would roughly correspond to the

1Note that the IB problem setting differs significantly from that of channel coding,
however. In channel coding, the channel is fixed, and we are free to vary the input
distribution, while in IB, the input distribution is fixed, and we are free to vary the
channel.
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number of neurons or synapses required to represent or store a sensory
signal X. In the case of data clustering, H(T ) is related to the number of
clusters.

In this letter, we introduce an alternative formulation of the IB, the deter-
ministic information bottleneck (DIB), replacing the compression measure
I(X; T ) with H(T ), thus emphasizing contraints on representation rather
than communication. Using a clever generalization of both cost function-
als, we derive an iterative solution to the DIB, which turns out to provide
a hard clustering, or deterministic mapping from X to T, as opposed to
the soft clustering, or probabilitic mapping, that IB provides. Finally, we
compare the IB and DIB solutions on synthetic data to help illustrate their
differences.

2 The Original Information Bottleneck

Given the joint distribution p(x, y), the encoding distribution q(t|x) is
obtained through the following information bottleneck (IB) optimization
problem:

min
q(t|x)

L[q(t|x)] = I(X; T ) − βI(Y; T ), (2.1)

subject to the Markov constraint T ↔ X ↔ Y. Here I(X; T ) denotes the
mutual information between X and T, that is, I(X; T ) ≡ H(T ) − H(T|X) =∑

x,t p(x, t) log
(

p(x,t)
p(x)p(t)

)
= DKL

[
p(x, t) | p(x) p(t)

]
,2 where DKL denotes the

Kullback-Leibler divergence.3 The first term in the cost function is meant
to encourage compression and the second, relevance. β is a nonnegative
free parameter representing the relative importance of compression and
relevance, and our solution will be a function of it. The Markov constraint

2Implicit in the summation here, we have assumed that X, Y, and T are discrete. We
will be keeping this assumption throughout for convenience of notation, but note that the
IB generalizes naturally to X, Y, and T continuously by simply replacing the sums with
integrals (see, e.g., Chechik, Globerson, Tishby, & Weiss, 2005).

3For those unfamiliar with it, mutual information is a very general measure of how
related two variables are. Classic correlation measures typically assume a certain form
of the relationship between two variables, say, linear, whereas mutual information is
agnostic as to the details of the relationship. One intuitive picture comes from the entropy
decomposition: I(X;Y) ≡ H(X) − H(X|Y). Since entropy measures uncertainty, mutual
information measures the reduction in uncertainty in one variable when observing the
other. Moreover, it is symmetric (I(X;Y) = I(Y; X)), so the information is mutual. Another
intuitive picture comes from the DKL form: I(X;Y) ≡ DKL

[
p(x, y) | p(x) p

(
y
)]

. Since DKL
measures the distance between two probability distributions, the mutual information
quantifies how far the relationship between x and y is from a probabilistically independent
one, that is, how far the joint p(x, y) is from the factorized p(x) p

(
y
)
. A very nice summary

of mutual information as a dependence measure is included in Kinney and Atwal (2014).
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simply enforces the probabilistic graphical structure of the task; the com-
pressed representation T is a (possibly stochastic) function of X and can get
information about Y only through X. Note that we are using p to denote
distributions that are given and fixed, and q to denote distributions that
we are free to change and are being updated throughout the optimization
process.

Through a standard application of variational calculus (see section 8 for
a detailed derivation of the solution to a more general problem introduced
below), one finds the formal solution4

q(t|x)= q(t)
Z(x, β)

exp
[−βDKL

[
p
(
y|x) | q

(
y|t)]] , (2.2)

q
(
y|t)= 1

q(t)

∑
x

q(t|x)p(x, y), (2.3)

where Z(x, β) ≡ exp
[
− λ(x)

p(x)
− β

∑
y p

(
y | x

)
log p(y|x)

p(y)

]
is a normalization fac-

tor and λ(x) is a Lagrange multiplier that enters enforcing normalization
of q(t | x).5 To get an intuition for this solution, it is useful to take a clus-
tering perspective. Since we are compressing X into T, many X will be
mapped to the same T, and so we can think of the IB as clustering xs into
their cluster labels t. The solution q(t|x) is then likely to map x to t when
DKL

[
p
(
y|x) | q

(
y|t)] is small or, in other words, when the distributions p

(
y|x)

and q
(
y|t) are similar. These distributions are similar to the extent that x and

t provide similar information about y. In summary, inputs x get mapped to
clusters t that maintain information about y, as was desired.

This solution is formal because the first equation depends on the second
and vice versa. However, Tishby et al. (1999) showed that an iterative ap-
proach can be built on the the above equations, which provably converges
to a local optimum of the IB cost function (see equation 2.1).

Starting with some initial distributions q(0)(t|x), q(0)(t), and q(0)
(
y|t), the

nth update is given by6

4For readers familiar with rate-distortion theory, equation 2.2 can be viewed as the so-
lution to a rate-distortion problem with the distortion measure given by the KL divergence
term in the exponent.

5More explicitly, our cost function L also implicitly includes a term
∑

x λ(x) [1 −∑
t q(t|x)], and this is where λ(x) comes into the equation. See section 8 for details.

6Note that if at step m, no xs are assigned to a particular t = t∗ (i.e., q(t | x) = 0 ∀x),
then q(m)(t∗) = q(m+1)(t∗) = 0. That is, no xs will ever again be assigned to t∗ (due to
the q(n−1)(t) factor in q(n−1)(t | x)). In other words, the number of ts “in use” can only
decrease during the iterative algorithm (or remain constant). Thus, it seems plausible that
the solution will not depend on the cardinality of T, provided it is chosen to be large
enough.
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q(n)(t|x)= q(n−1)(t)
Z(n)(x, β)

exp[−βDKL[p(y|x) | q(n−1)(y|t)]], (2.4)

q(n)(t)=
∑

x

q(n)(t|x)p(x) , (2.5)

q(n)
(
y|t)= 1

q(n)(t)

∑
x

q(n)(t|x)p(x, y). (2.6)

Note that the first equation, 2.4, is the only “meaty” one; the other two,
2.5 and 2.6, are just there to enforce consistency with the laws of probability
(e.g., that marginals are related to joints as they should be). In principle,
with no proof of convergence to a global optimum, it might be possible
for the solution obtained to vary with the initialization, but in practice,
the cost function is smooth enough that this does not seem to happen.
This algorithm is summarized in algorithm 1. Note that while the general
solution is iterative, there is at least one known case in which an analytic
solution is possible: when X andY are jointly gaussian (Chechik, Globerson,
Tishby, & Weiss, 2005).

In summary, given the joint distribution p(x, y), the IB method extracts a
compressive encoder q(t | x) that selectively maintains the bits from X that
are informative about Y. As the encoder is a function of the free parameter
β, we can visualize the entire family of solutions on a curve (see Figure 1),
showing the trade-off between compression (on the x-axis) and relevance
(on the y-axis), with β as an implicitly varying parameter. For small β,
compression is more important than prediction, and we find ourselves at
the bottom left of the curve in the high-compression, low-prediction regime.
As β increases, prediction becomes more important relative to compression,
and we see that both I(X; T ) and I(T;Y) increase. At some point, I(T;Y)

saturates, because there is no more information aboutY that can be extracted
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Figure 1: An illustrative IB curve. I(T;Y) is the relevance term from equa-
tion 2.1; I(X; T ) is the compression term. I(X;Y) is an upper bound on
I(T;Y) since T gets its information about Y only via X. log(|T|), where |T|
is the cardinality of the compression variable, is a bound on I(X; T ) since
I(X; T ) = H(T ) − H(T | X) ≤ H(T ) ≤ log(|T|).

from X (either because I(T;Y) has reached I(X;Y) or because T has too
small cardinality). In this regime, the encoder will approach the trivially
deterministic solution of mapping each x to its own cluster. At any point
on the curve, the slope is equal to β−1, which we can read off directly from
the cost functional. Note that the region below the curve is shaded because
this area is feasible; for suboptimal q(t | x), solutions will lie in this region.
Optimal solutions will, of course, lie on the curve, and no solutions will lie
above the curve.

Additional work on the IB has highlighted its relationship with maxi-
mum likelihood on a multinomial mixture model (Slonim & Weiss, 2002)
and canonical correlation analysis (Creutzig, Globerson, & Tishby, 2009)—
and therefore linear gaussian models (Bach & Jordan, 2006) and slow fea-
ture analysis (Turner & Sahani, 2007). Applications have included speech
recognition (Hecht & Tishby, 2005; Hecht, Noor, & Tishby, 2009), topic mod-
eling (Slonim & Tishby, 2000b, 2001; Bekkerman, El-Yaniv, Tishby, & Winter,
2001, 2003), and neural coding (Schneidman, Slonim, Tishby, de Ruyter van
Steveninck, & Bialek, 2001; Palmer, Marre, Berry, & Bialek, 2015). Most re-
cently, the IB has even been proposed as a method for benchmarking the
performance of deep neural networks (Tishby & Zaslavsky, 2015).

3 The Deterministic Information Bottleneck

Our motivation for introducing an alternative formulation of the informa-
tion bottleneck is rooted in the compression term of the IB cost function;
there, the minimization of the mutual information I(X; T ) represents com-
pression. As discussed above, this measure of compression comes from the
channel coding literature and implies a restriction on the communication
cost between X and T. Here, we are interested in the source coding notion of
compression, which implies a restriction on the representational cost of T.
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For example, in neuroscience, there is a long history of work on redundancy
reduction in the brain in the form of minimizing H(T ) (Barlow, 1981, 2001a,
2001b).

Let us call the original IB cost function LIB, that is, LIB ≡ I(X; T ) −
βI(T;Y). We now introduce the deterministic information bottleneck (DIB)
cost function,

LDIB

[
q(t|x)

] ≡ H(T ) − βI(T;Y) , (3.1)

which is to be minimized over q(t | x), and subject to the same Markov
constraint as the original formulation, equation 2.1. The motivation for the
“deterministic” in its name will become clear in a moment.

To see the distinction between the two cost functions, note that

LIB − LDIB = I(X; T ) − H(T ) (3.2)

= −H(T | X) , (3.3)

where we have used the decomposition of the mutual information I(X; T ) =
H(T ) − H(T | X). H(T | X) is sometimes called the noise entropy and mea-
sures the stochasticity in the mapping from X to T. Since we are minimizing
these cost functions, this means that the IB cost function encourages stochas-
ticity in the encoding distribution q(t | x) relative to the DIB cost function.
In fact, we will see that by removing this encouragement of stochasticity,
the DIB problem actually produces a deterministic encoding distribution,
that is, an encoding function, hence, the “deterministic” in its name.

Naively taking the same variational calculus approach as for the IB prob-
lem, one cannot solve the DIB problem.7 To make this problem tractable,
we are going to define a family of cost functions of which the IB and
DIB cost functions are limiting cases. That family, indexed by α, is defined
as8

Lα ≡ H(T ) − αH(T | X) − βI(T;Y) . (3.4)

7When you take the variational derivative of the LDIB + Lagrange multiplier term
with respect to q(t | x) and set it to zero, you get no explicit q(t | x) term, and it is therefore
not obvious how to solve these equations. We cannot rule out that approach is possible,
of course; we have just taken a different route here.

8Note that for α < 1, we cannot allow T to be continuous since H(T ) can become
infinitely negative, and the optimal solution in that case will trivially be a delta function
over a single value of T for all X, across all values of β. This is in contrast to the IB, which
can handle continuous T. In any case, we continue to assume discrete X, Y, and T for
convenience.
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Clearly, LIB = L1. However, instead of looking at LDIB as the α = 0 case,
we define the DIB solution qDIB(t | x) as the α → 0 limit of the solution to
the generalized problem qα(t | x):9

qDIB(t | x) ≡ lim
α→0

qα(t | x) . (3.5)

Taking the variational calculus approach to minimizing Lα (under
the Markov constraint), we get the following solution for the encoding
distribution (see the appendix for the derivation and explicit form of the
normalization factor Z(x, a, β)):

qα(t|x)= 1
Z(x, α, β)

exp
[

1
α

(
log qα(t) − βDKL

[
p
(
y|x) | qα

(
y|t)])] , (3.6)

qα

(
y|t)= 1

qα(t)

∑
x

p
(
y|x)

qα(t|x)p(x) . (3.7)

Note that the last equation is just equation 2.3, since this follows from the
Markov constraint. With α = 1, we can see that the first equation becomes
the IB solution from equation 2.2, as should be the case.

Before we take the α → 0 limit, note that we can now write a generalized
IB iterative algorithm (indexed by α) that includes the original as a special
case (α = 1):

q(n)
α (t|x)= 1

Z(x, α, β)
exp

[
1
α

(log q(n−1)
α (t) − βDKL[p

(
y|x) | q(n−1)

α

(
y|t)])

]
,

(3.8)

q(n)
α (t)=

∑
x

p(x) q(n)
α (t|x), (3.9)

q(n)
α

(
y|t)= 1

q(n)
α (t)

∑
x

q(n)
α (t|x)p(x, y). (3.10)

This generalized algorithm can be used in its own right; however, we
will not discuss that option further here.

For now, we take the limit α → 0 and see that something interesting
happens with qα(t | x): the argument of the exponential begins to blow up.
For a fixed x, this means that q(t | x) will collapse into a delta function at
the value of t which maximizes log q(t) − βDKL

[
p
(
y | x

) | q
(
y | t

)]
, that is,

9Note a subtlety here that we cannot claim that the qDIB is the solution to LDIB, for
although LDIB = lim

α→0 L
α

and qDIB = lim
α→0 q

α
, the solution of the limit need not be

equal to the limit of the solution. It would, however, be surprising if that were not the
case.
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lim
α→0

qα(t|x) = f : X → T, (3.11)

where

f (x) = t∗ = argmax
t

(
log q(t) − βDKL

[
p
(
y|x) | q

(
y|t)]) . (3.12)

So, as anticipated, the solution to the DIB problem is a deterministic
encoding distribution. The log q(t) above encourages that we use as few
values of t as possible, via a “rich-get-richer” scheme that assigns each x
preferentially to a t with many xs already assigned to it. The KL divergence
term, as in the original IB problem, just makes sure we pick ts which retain
as much information from x about y as possible. The parameter β, as in
the original problem, controls the trade-off between how much we value
compression and prediction.

Also as in the original problem, the solution above is only a formal
solution, since equation 3.6 depends on equation 3.7 and vice versa. We
will again need to take an iterative approach; in analogy to the IB case, we
repeat the following updates to convergence (from some initialization):10

f (n)(x)= argmax
t

(log q(n−1)(t) − βDKL[p
(
y|x) | q(n−1)

(
y|t)]), (3.13)

q(n)(t|x)= δ(t − f (n)(x)), (3.14)

q(n)(t)=
∑

x

q(n)(t|x)p(x) , (3.15)

=
∑

x: f (n)(x)=t

p(x) (3.16)

q(n)
(
y|t)= 1

q(n)(t)

∑
x

q(n)(t | x) p(x, y), (3.17)

=
∑

x: f (n)(x)=t p(x, y)∑
x: f (n)(x)=t p(x)

. (3.18)

This process is summarized in algorithm 2.
Note that the DIB algorithm also corresponds to “clamping” IB at every

step by assigning each x to its highest-probability cluster t. We can see this

10As with the IB, the DIB has the property that once a cluster goes unused, it will not
be brought back into use in future steps. That is, if q(m)(t) = 0, then log q(m)(t) = −∞ and
q(m+1)(t | x) = 0 ∀x. So once again, one should conservatively choose the cardinality of T
to be “large enough”; for both the IB and DIB, we chose to set it equal to the cardinality
of X.
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by taking the argmax of the logarithm of q(t | x) in equation 2.2, noting
that the argmax of a positive function is equivalent to the argmax of its
logarithm, discarding the log(Z(x, β)) term since it does not depend on
t, and seeing that the result corresponds to equation 3.12. We emphasize,
however, that this is not the same as simply running the IB algorithm to
convergence and then clamping the resulting encoder; that would, in most
cases, produce a suboptimal, “unconverged” deterministic solution.

As with the IB, the DIB solutions can be plotted as a function of β.
However, in this case, it is more natural to plot I(T;Y) as a function of
H(T ) rather than I(X; T ). That said, in order to compare the IB and DIB,
they need to be plotted in the same plane. When plotting in the I(X; T )

plane, the DIB curve will of course lie below the IB curve, since in this
plane, the IB curve is optimal; the opposite will be true when plotting in
the H(T ) plane. Comparisons with experimental data can be performed in
either plane. A Python implementation of algorithms 1 and 2, as well as
tools for generating synthetic data and the analysis of results, is available
at https://github.com/djstrouse/information-bottleneck.

4 Comparison of IB and DIB

To get an idea of how the IB and DIB solutions differ in practice, we gen-
erated a series of random joint distributions p(x, y), solved for the IB and
DIB solutions for each, and compared them in both the IB and DIB plane.
To generate the p(x, y), we first sampled p(x) from a symmetric Dirichlet
distribution with concentration parameter αx (so p(x) ∼ Dir[αx]) and then
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Figure 2: Example IB and DIB solutions. (Left) IB plane. (Right) DIB plane. The
upper limit of the y-axes is I(X,Y), since this is the maximal possible value
of I(T;Y). The upper limit of the x-axes is log(|T|), since this is the maximal
possible value of H(T ) and I(X, T ) (the latter being true since I(X, T ) is bounded
above by both H(T ) and H(X), and |T| < |X|). The dashed vertical lines mark
H(X), which is both an upper bound for I(X, T ) and a natural comparison for
H(T ) (since to place each data point in its own cluster, we need H(T ) = H(X)).

sampled each row of p
(
y | x

)
from another symmetric Dirichlet distribution

with concentration parameter α
(i)
y (so p

(
y | xi

) ∼ Dir[α(i)
y ]). In the experi-

ments shown here, we set αx to 1000, so that each xi was approximately
equally likely, and we set α

(i)
y to be equally spaced logarithmically between

10−1.3 and 101.3 in order to provide a range of informativeness in the con-
ditionals. We set the cardinalities of X and Y to |X| = 256 and |Y| = 32,
with |X| > |Y| for two reasons. First, this encourages overlap between the
conditionals p

(
y|x)

, which leads to a more interesting clustering problem.
Second, in typical applications, this will be the case, such as in document
clustering, where there are often many more documents than vocabulary
words. Since the number of clusters in use for both IB and DIB can only
decrease from iteration to iteration (see footnote 10), we always initialized
|T| = |X|.11 For the DIB, we initialized the cluster assignments to be as even
across the cluster as possible; that is, each data point belonged to its own
cluster. For IB, we initialized using a soft version of the same procedure,
with 75% of each conditional’s probability mass assigned to a unique clus-
ter and the remaining 25% a normalized uniform random vector over the
remaining |T| − 1 clusters.

An illustrative pair of solutions is shown in Figure 2. The key feature to
note is that while performance of the IB and DIB solutions is very similar
in the IB plane, their behavior differs drastically in the DIB plane.

Perhaps most unintuitive is the behavior of the IB solution in the DIB
plane, where from an entropy perspective, the IB actually “decompresses”

11An even more efficient setting might be to set the cardinality of T based on the
entropy of X, say, |T| = ceiling

(
exp(H(X))

)
, but we did not experiment with this.
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Figure 3: Example IB and DIB solutions across different IB initializations. De-
tails identical to Figure 2, except colors represent different initializations for the
IB, as described in the text.

the data (i.e., H(T ) > H(X)). To understand this behavior, recall that the IB’s
compression term is the mutual information I(X, T ) = H(T ) − H(T | X).
This term is minimized by any q(t | x) that maps ts independent of xs.
Consider two extremes of such mappings. One is to map all values of X
to a single value of T; this leads to H(T ) = H(T | X) = I(X, T ) = 0. The
other is to map each value of X uniformly across all values of T; this leads
to H(T ) = H(T | X) = log |T| and I(X, T ) = 0. In our initial studies, the IB
consistently took the latter approach.12 Since the DIB cost function favors
the former approach (and indeed the DIB solution follows this approach),
the IB consistently performs poorly by the DIB’s standards. This difference
is especially apparent at small β, where the compression term matters most,
and as β increases, the DIB and IB solutions converge in the DIB plane.

To encourage the IB to perform closer to DIB optimality at small β, we
next altered our initialization scheme of q(t | x) to one biased toward single-
cluster solutions; instead of each xi having most of its probability mass on a
unique cluster ti, we placed most of the probability mass for each xi on the
same cluster t∗. The intended effect was to start the IB closer to solutions in
which all data points were mapped to a single cluster. Results are shown in
Figure 3. Here, p0 is the amount of probability mass placed on the cluster
t∗, that is, q(t∗ | x) = p0, ∀x; the probability mass for the remaining |T| −
1 clusters was again initialized to a normalized uniform random vector.
“Random” refers to an initialization that skips placing the p0 mass and just
initializes each q

(
t | xi

)
to a normalized uniform random vector.

We note several features. First, although we can see a gradual shift of
the IB toward DIB-like behavior in the DIB plane as p0 → 1, the IB solu-
tions never quite reach the performance of DIB. Moreover, as p0 → 1, the
single-cluster initializations exhibit a phase transition in which, regardless
of β, they “skip” over a sizable fraction of lower-I(Y; T ) solutions that

12Intuitively, this approach is more random and is therefore easier to stumble on
during optimization.
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Figure 4: Fit times for IB and DIB. Cumulative distribution function of fit times
across β for a variety of settings of the convergence tolerance. Note that absolute
numbers here depend on hardware, so we emphasize only relative comparisons
of IB versus DIB. Note also that across the range of ctol values we tested here,
the (D)IB curves vary by less than the width of the data points, so we omit them.

are picked up by DIB. Third, even for higher-I(Y; T ) solutions, the single-
cluster initializations seem to perform suboptimally, not quite extracting all
of the information I(X;Y), as DIB and the multicluster initialization from
the previous section do. This can be seen in both the IB and DIB plane.

To summarize, the IB and DIB perform similarly by the IB standards, but
the DIB tends to outperform the IB dramatically by the DIB’s standards.
Careful initialization of the IB can make up some of the difference, but not
all.

It is also worth noting that across all the data sets we tested, the DIB also
tended to converge faster, as illustrated in Figure 4. The DIB speedup over
IB varied depending on the convergence conditions. In our experiments,
we defined convergence as when the relative step-to-step change in the cost
functional L was smaller than some threshold ctol, that is, when

∣∣∣ Ln−1−Ln
Ln−1

∣∣∣ <

ctol at step n. In the results above, we used ctol = 10−3. In Figure 4, we vary
ctol, with the IB initialization scheme fixed to the original multicluster ver-
sion, to show the effect on the relative speedup of DIB over IB. While DIB
remained approximately two to five times faster than IB in all cases tested,
that speedup tended to be more pronounced with lower ctol. Since the ideal
convergence conditions would probably vary by data set size and complex-
ity, it is difficult to make any general conclusions, though our experiments
do at least suggest that DIB offers a computational advantage over IB.

5 Related Work

The DIB is not the first hard clustering version of IB.13 Indeed, the agglomer-
ative information bottleneck (AIB) (Slonim & Tishby, 2000a) also produces a

13In fact, even the IB itself produces a hard clustering in the large β limit. However, it
trivially assigns all data points to their own clusters.
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hard clustering and was introduced soon after the IB. Thus, it is important
to distinguish between the two approaches. AIB is a bottom-up, greedy
method that starts with all data points belonging to their own clusters and
iteratively merges clusters in a way that maximizes the gain in relevant
information. It was explicitly designed to produce a hard clustering. DIB is
a top-down method derived from a cost function that was not designed to
produce a hard clustering. Our starting point was to alter the IB cost func-
tion to match the source coding notion of compression. The emergence of
hard clustering in DIB is itself a result. Thus, while AIB does provide a hard
clustering version of IB, DIB contributes the following in addition. First, our
study emphasizes why a stochastic encoder is optimal for IB, namely, due to
the noise entropy term. Second, our study provides a principled, top-down
derivation of a hard clustering version of IB, based on an intuitive change to
the cost function. Third, our nontrivial derivation also provides a cost func-
tion and solution that interpolates between DIB and IB by adding back the
noise entropy continuously, that is, with 0 < α < 1. This interpolation may
be viewed as adding a regularization term to DIB, one that may perhaps
be useful in dealing with finitely sampled data. Another interpretation of
the cost function with intermediate α is as a penalty on both the mutual
information between X and T and the entropy of the compression, H(T ).

The original IB also provides a deterministic encoding upon taking the
limit β → ∞ that corresponds to the causal-state partition of histories (Still,
Crutchfield, & Ellison, 2010). However, this is the limit of no compression,
whereas our approach allows for an entire family of deterministic encoders
with varying degrees of compression.

6 Discussion

Here we have introduced the deterministic information bottleneck (DIB)
as an alternative to the information bottleneck (IB) for compression and
clustering. We have argued that the DIB cost function better embodies the
goal of lossy compression of relevant information and shown that it leads
to a nontrivial deterministic version of the IB. We have compared the DIB
and IB solutions on synthetic data and found that in our experiments, the
DIB performs nearly identically to the IB in terms of the IB cost function,
but it is far superior in terms of its own cost function. We also noted that
the DIB achieved this performance at a computational efficiency two to five
times better than the IB.

Of course, in addition to the studies with synthetic data here, it is im-
portant to compare the DIB and IB on real-world data sets as well to see
whether the DIB’s apparent advantages hold—for example, with data sets
that have a more explicit hierarchical structure for both algorthms to ex-
ploit, such as in topic modeling (Blei, Griffiths, Jordan, & Tenenbaum, 2003;
Slonim & Weiss, 2002).
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One particular application of interest is maximally informative cluster-
ing, where it would be interesting to know how IB and DIB relate to classic
clustering algorithms such as k-means (Strouse & Schwab, 2017). Previous
work has, for example, offered a principled way of choosing the number
of clusters based on the finiteness of the data (Still & Bialek, 2004), and
similarly interesting results may exist for the DIB. More generally, there
are learning theory results showing generalization bounds on IB for which
an analog on DIB would be interesting as well (Shamir, Sabato, & Tishby,
2010).

Another potential area of application is modeling the extraction of pre-
dictive information in the brain (which is one particular example in a long
line of work on the exploitation of environmental statistics by the brain
(Barlow, 1981, 2001a, 2001b; Atick & Redlich, 1992; Olshausen & Field,
1996, 1997, 2004; Simoncelli & Olshausen, 2001)). There, X would be the
stimulus at time t, Y the stimulus a short time in the future t + τ , and T
the activity of a population of sensory neurons. One could even consider
neurons deeper in the brain by allowing X and Y to correspond not to an
external stimulus but to the activity of upstream neurons. An analysis of
this nature using retinal data was recently performed with the IB (Palmer
et al., 2015). It would be interesting to see if the same data correspond better
to the behavior of the DIB, particularly in the DIB plane, where the IB and
DIB differ dramatically.

We close by noting that DIB is an imperfect name for the algorithm
introduced here for a couple of reasons. First, there exist other deterministic
limits and approximations to the IB (see, e.g., the discussion of the AIB in
section 5), and so we hesitate to use the phrase “the” deterministic IB.
Second, our motivation here was not to create a deterministic version of IB
but instead to alter the cost function in a way that better encapsulates the
goals of certain problems in data analysis. Thus, the deterministic nature of
the solution was a result, not a goal. For this reason, “entropic bottleneck”
might also be an appropriate name.

Appendix: Derivation of Generalized IB Solution

Given p(x, y) and subject to the Markov constraint T ↔ X ↔ Y, the gener-
alized IB problem is

min
q(t|x)

L[q(t|x)] = H(T ) − αH(T|X) − βI(Y; T ) −
∑
x,t

λ(x) q(t|x), (A.1)

where we have now included the Lagrange multiplier term (which en-
forces normalization of q(t|x)) explicitly. The Markov constraint implies the
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following factorizations,

q
(
t|y)=

∑
x

q(t|x)p
(
x|y)

, (A.2)

q(t)=
∑

x

q(t|x)p(x) , (A.3)

which give us the following useful derivatives:

δq
(
t|y)

δq(t|x)
= p

(
x|y)

, (A.4)

δq(t)
δq(t|x)

= p(x) . (A.5)

Now, taking the derivative of the cost function with respect to the en-
coding distribution, we get:

δL
δq(t|x)

=− δ

δq(t|x)

∑
t

q(t) log q(t) − δ

δq(t|x)

∑
x,t

λ(x) q(t|x) (A.6)

+α
δ

δq(t|x)

∑
x,t

q(t|x)p(x) log q(t|x) (A.7)

−β
δ

δq(t|x)

∑
y,t

q
(
t|y)

p
(
y
)

log

[
q
(
t|y)

q(t)

]
(A.8)

=− log q(t)
δq(t)

δq(t|x)
− q(t)

δ log q(t)
δq(t|x)

− λ(x)
δq(t|x)

δq(t|x)
(A.9)

+α

[
p(x) log q(t|x)

δq(t|x)

δq(t|x)
+ q(t|x)p(x)

δ log q(t|x)

δq(t|x)

]
(A.10)

−β
∑

y

[
p
(
y
)

log

[
q
(
t|y)

q(t)

]
δq

(
t|y)

δq(t|x)

]
(A.11)

+β
∑

y

[
q
(
t|y)

p
(
y
) δ log q

(
t|y)

δq(t|x)
+ q

(
t|y)

p
(
y
) δ log q(t)

δq(t|x)

]
(A.12)

=−p(x) log q(t) − p(x) − λ(x) + α
[
p(x) log q(t|x) + p(x)

]
(A.13)

−β
∑

y

[
p
(
y
)

log

[
q
(
t|y)

q(t)

]
p
(
x|y) + p

(
y
)

p
(
x|y) − q

(
t|y)

p
(
y
) p(x)

q(t)

]

(A.14)
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= −p(x) log q(t) − p(x) − λ(x) + α
[
p(x) log q(t|x) + p(x)

]
(A.15)

−βp(x)

⎡
⎣∑

y

p
(
y|x)

log

[
q
(
t|y)

q(t)

]
+

∑
y

p
(
y|x) −

∑
y

q
(
y|t)

⎤
⎦ (A.16)

= p(x)

[
−1 − log q(t) − λ(x)

p(x)
+ α log q(t|x) + α

−β

⎡
⎣∑

y

p
(
y|x)

log

[
q
(
t|y)

q(t)

]⎤
⎦

⎤
⎦ . (A.17)

Setting this to zero implies that

α log q(t|x) = 1 − α + log q(t) + λ(x)

p(x)
+ β

⎡
⎣∑

y

p
(
y|x)

log

[
q
(
t|y)

q(t)

]⎤
⎦ .

(A.18)

We want to rewrite the β term as a KL divergence. First, we need

that log
[

q(t|y)
q(t)

]
= log

[
q(t,y)

q(t)p(y)

]
= log

[
q(y|t)
p(y)

]
. Second, we add and subtract

β
∑

y p
(
y|x)

log
[

p(y|x)
p(y)

]
. This gives us

α log q(t|x)= 1 − α + log q(t) + λ(x)

p(x)
+ β

∑
y

p
(
y|x)

log

[
p
(
y|x)

p
(
y
)

]

(A.19)

−β

⎡
⎣∑

y

p
(
y|x)

log

[
p
(
y|x)

q
(
y|t)

]⎤
⎦ . (A.20)

The second β term is now just DKL

[
p
(
y|x) | q

(
y|t)]. Dividing both sides

by α, this leaves us with

log q(t|x) = z(x, α, β) + 1
α

log q(t) − β

α
DKL

[
p
(
y | x

) |q(y|t)] , (A.21)

where we have absorbed all of the terms that do not depend on t into a
single factor:
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z(x, α, β) ≡ 1
α

− 1 + λ(x)

αp(x)
+ β

α

∑
y

p
(
y | x

)
log

[
p
(
y | x

)
p
(
y
)

]
. (A.22)

Solving for q(t|x), we get

q(t|x)= exp[z] exp
[

1
α

(
log q(t) − βDKL

[
p
(
y|x) | q

(
y|t)])] (A.23)

= 1
Z

exp
[

1
α

(
log q(t) − βDKL

[
p
(
y|x) | q

(
y|t)])] , (A.24)

where

Z(x, α, β) ≡ exp[−z] (A.25)

is just a normalization factor. Now that we are done with the general deriva-
tion, we add a subscript to the solution to distinguish it from the special
cases of the IB and DIB:

qα(t|x) = 1
Z(x, α, β)

exp
[

1
α

(
log q(t) − βDKL

[
p
(
y|x) | q

(
y|t)])]. (A.26)

The IB solution is then

qIB(t|x) = qα=1(t|x) = q(t)
Z

exp
[−βDKL

[
p
(
y|x) | q

(
y|t)]] , (A.27)

while the DIB solution is

qDIB(t|x) = lim
α→0

qα(t|x) = δ
(
t − t∗(x)

)
, (A.28)

with

t∗(x) = argmax
t

(
log q(t) − βDKL

[
p
(
y|x) | q

(
y|t)]) . (A.29)
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