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Abstract:

This thesis explores three applications of information theory in machine learning, all

involving the optimization of information flow in some learning problem. In Chapter 2,

we introduce a method for extracting the most informative bits that one signal contains

about another. Our method, the deterministic information bottleneck (DIB), is an

alternative formulation of the information bottleneck (IB). In Chapter 3, we adapt

the DIB to the problem of finding the most informative clusterings of geometric data.

We also introduce an approach to model selection that naturally emerges within the

(D)IB framework. In Chapter 4 we introduce an approach to encourage / discourage

agents in a multi-agent reinforcement learning setting to share information with one

another. We conclude in Chapter 5 by discussing ongoing and future work in these

directions.
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Chapter 1

Introduction

This is a thesis about measuring and controlling the flow of information in learning

problems. That learning should involve the flow of information in a colloquial sense

should be intuitive - what is learning but the acquisition and processing of information?

However, here we mean something more specific, both in terms of information and

learning. By information, we mean it in the sense of Claude Shannon’s information

theory (Shannon 1948). And by learning, we mean what is commonly referred to

today as machine learning. We will first provide a brief introduction to both topics,

before moving on to outline our program of research at their intersection.

1.1 Information theory

Information theory was originally developed by Claude Shannon to understand the

fundamental limits of communication (Shannon 1948). As a member of the research

team at Bell Labs, which operated a monopoly on American telecommunications at

the time, Shannon and his team had practical reasons to be concerned with such

questions. While a full review of information theory is outside of our scope here (Cover

and Thomas (2006) is the excellent standard textbook on the topic), we will focus on
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two of the most important quantities that Shannon introduced - entropy and mutual

information - quantities that will appear again and again in the following chapters.

1.1.1 Entropy

Entropy is a measure of uncertainty. Shannon derived it by stating three axioms

he wanted a measure of uncertainty to abide by and showing that entropy was the

unique quantity that satisfied them. For a discrete random variable X taking on

values in X , the entropy H(X) is defined as:1

H(X) ≡ −
∑
x∈X

p(x) log p(x) , (1.1)

where p(x) is the probability mass function of X. Entropy is always positive. The

lowest value it takes on is zero. This happens when p(x) has all of its probability

mass on one value of x (i.e. p(x∗) = 1, p
(
x
′)

= 0 for all x′ 6= x∗), or in other words,

when we are certain of the value of X. The highest value it takes on is log|X |. This

happens when p(x) is spread evenly across all values of x, or in other words, when

we have no knowledge favoring any particular value of X over another and are thus

maximally uncertain of its value.

Entropy is also defined for continuous variables by replacing the sum with an

integral. That is, for a continuous random variable X taking of values in X , the

so-called differential entropy h(X) is defined as:

h(X) = −
∫
X
f(x) log f(x) dx, (1.2)

where f(x) is the probability density function of X. Differential entropy differs from

its discrete cousin in that it can be negative. To see this, consider the entropy of

f(x) = 1
a
for x ∈ [0, a]. Then h(X) = −

∫ a
0

1
a

log 1
a
dx = log a, which for a < 1 is

1Unless otherwise stated, all logs are base 2, the units of which are typically referred to as bits.
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negative. In fact, as a→ 0, h(X) becomes infinitely negative. Thus, if one wished to

minimize the differential entropy as part of some objective function (see section 1.2),

then the objective could potentially diverge, leading to a degenerate solution with

f(X) infinitely peaked at some value. This is an issue we run into in our own work in

chapter 2.

One reason for the importance of entropy (and differential entropy) is its role in

the fundamental limits of data compression. The basic idea behind (lossless) data

compression is to use the shortest descriptions for the most frequent messages, and

longer descriptions for the less frequent ones. Compression is formalized as as a

source code C mapping from a random variable X to B∗, the set of finite-length

binary strings (i.e. strings of 0s and 1s). Letting C(x) be the codeword assigned to

x ∈ X and l(x) the length of C(x), then the expected length L(C) of a source code

is L(C) =
∑

x∈X p(x) l(x). It is natural to wonder: for a given source distribution

p(x), what source code minimizes L(C) and what is the minimal value L∗(C) ? A full

formal discussion of this question is unfortunately too long to include here, but (very)

roughly speaking, the minimal-length source code achieves L∗(C) ≈ H(X). That is,

the entropy of a random variable is the fundamental limit on its compression. This

fact about entropy will motivate the algorithm we introduce in chapter 2.

Any physicist reading at this point is probably wondering: wait, doesn’t the

concept of entropy predate Claude Shannon by a long shot? How does the entropy

introduced here relate to the one from statistical physics? We answer the second

question first. The entropy in physics is typically defined as the logarithm of the

number of microstates in a system, which when all microstates are equally likely,

corresponds exactly to the definition of entropy above. As for the first question, legend

has it that when Claude Shannon derived his measure of uncertainty axiomatically,

he approached his colleague John von Neumann and asked what he should call it. von

Neumann’s response was: “You should call it entropy, for two reasons. In the first place
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your uncertainty function has been used in statistical mechanics under that name, so

it already has a name. In the second place, and more important, no one really knows

what entropy really is, so in a debate you will always have the advantage.”

1.1.2 Mutual information

Mutual information is a measure of the information that two variables contain

about one another. To define and understand it, we first introduce two other quantities:

the conditional entropy and the relative entropy.

Conditional entropy is a measure of the uncertainty in one variable after observing

another. The conditional entropy of the random variable Y conditioned on the random

variable X is defined as:

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x) (1.3)

= −
∑
x∈X

p(x)
∑
y

p(y | x) log p(y | x) . (1.4)

Thus, it is simply the average entropy of a variable after conditioning on knowledge of

another variable.

Relative entropy, or the Kullback–Leibler (KL) divergence, is a measure of the

distance between two probability distributions. The KL divergence between two

probability mass functions p(x) and q(x) over the same space X is defined as:

DKL[p | q] ≡
∑
x∈X

p(x) log
p(x)

q(x)
. (1.5)

The KL divergence is bounded below by 0,2 and saturates this lower bound if and

only if p = q. The KL divergence is not bounded above though: if for any symbol

x ∈ X , p(x) > 0 but q(x) = 0, then DKL[p | q] =∞. The KL divergence is also not
2The nonnegativity of the KL is extensively used in many proofs in information theory and

machine learning.
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symmetric (i.e. DKL[p | q] 6= DKL[q | p]), so the ordering of p and q in the notation

matters.

With these two quantities in mind, we provide four equivalent definitions of mutual

information. The mutual information I(X;Y ) between two random variables X and

Y taking values in X and Y , respectively, is defined as:

I(X;Y ) ≡
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x) p(y)
(1.6)

=DKL[p(x, y) | p(x) p(y)] (1.7)

=H(X)−H(X | Y ) (1.8)

=H(Y )−H(Y | X) . (1.9)

The first definition is written in terms of the elemental probabilities, but it is the

latter three that give the intuition behind the mutual information.

In equation 1.7, we see that the mutual information is the KL divergence between

the joint distribution p(x, y) and the factorized distribution p(x) p(y). Thus, mutual

information measures the distance between the true distribution of two variables and

their factorized version. When p(x, y) = p(x) p(y), we say that p(x, y) “factorizes”

and X and Y are “statistically independent.” In that case, I(X;Y ) = 0. The

further from statistically independent that X and Y are, or in other words, the more

statistically dependent they are, the higher the mutual information between them.

We use the words “mutual” and “between” because mutual information is symmetric

(i.e. I(X;Y ) = I(Y ;X)). Because of this, mutual information can be thought of as a

general measure of the association between two variables, one that measures all types

of nonlinear dependence, unlike a correlation coefficient (such as a Pearson correlation,

which only measures linear dependence) (Kinney and Atwal 2014).

In equations 1.8 and 1.9, we see that the mutual information is the difference

between two entropies. We can interpret this difference as the average reduction
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in uncertainty in one variable when observing the other. Of course, intuitively, a

reduction in uncertainty about something means one has gained information about

it, and it is this interpretation that gives mutual information its name (the “mutual”

part again comes from its symmetry).

Besides its use as a general measure of dependence, mutual information also derives

its usefulness from its role in the fundamental limits of communication. Communication

is formalized as choosing an encoding function fromM possible messages to a sequence

of n codewords from a set of input symbols X which are passed through a fixed noisy

channel described by p(y | x). The receiver receives n codewords in a set of output

symbols Y and decodes them to guess the original message. The “channel capacity” is

then the highest rate in bits per channel use at which information can be communicated

with arbitrarily low probability, that is the maximal value of C = logM
n

for which

decoding errors tend to zero as n → ∞. Shannon’s most famous result is that the

channel capacity is equal to the maximum mutual information, C = maxp(x) I(X;Y ).3

We will refer to this result in our discussion of the information bottleneck in chapter 2.

Although less commonly associated with physics than entropy, mutual information

has also proved to be a useful concept in physics. In quantum physics, entropies

can be generalized to Von Neumman entropies and entanglement entropies. One can

form mutual informations using these entropies, which provide a measure of total

correlation, which in some special cases can be a measure of pure entanglement. In

Hayden et al. (2013), the quantum version of 3-spatial region mutual information was

studied. The positivity of the quantity I3 = I(A;BC)− I(A;B)− I(A;C) is known

as monogamy. For holographic quantum field theories, the mutual informations of

any three disjoint spatial regions are monogamous. This is interesting because it’s

a measure of entanglement, and it suggests the the correlations in holographic field

theories are quantum and not classical. A pretty famous use of entropy is Page (1993),
3Again, this is a highly streamlined discussion; for details, see Cover and Thomas (2006).
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which considers the average entropy of a random subsystem. This paved the way for

work on applying information theory to study the black hole information problem

and quantum chaos. In Shenker and Stanford (2014), mutual information was used

in holography to study the butterfly effect. In Hosur et al. (2016), I3 was studied in

operators and related to quantum chaos. In their setup, the I3 is always less than 0,

but they suggest and give evidence that the negativity of I3 is a measure of information

theoretic scrambling.

1.1.3 Summary

To summarize, entropy measures uncertainty, and is the fundamental limit of

compression. Mutual information measures dependence, or the average reduction in

uncertainty in one variable when observing another, and is the fundamental limit of

communication. Both play important roles in physics, probabilistic inference, and

across the sciences.

1.2 Machine learning

Machine learning is fundamentally about teaching computers to solve problems

that we don’t know how to explicitly tell them to solve. In some cases, we humans

might be able to perform the task, but we want to teach a computer to do so for

reasons of efficiency and scalability. In other cases, we humans might not even know

how to perform the task ourselves.

A full introduction to machine learning is again far beyond the scope of this thesis

(for an somewhat quirky introduction popular with physicists, seeMacKay (2002); for

popular mainstream choices for introductory courses, see Bishop (2006) and Murphy

(2012)). Here, we simply introduce a few key concepts necessary to understanding the

work in this thesis. First, we outline the general “optimization-based” approach to
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machine learning. Then, we describe the three typical categories of machine learning

problems.

1.2.1 Optimization-based learning

Imagine you were asked to write a program to calculate a checking account balance,

given a list of the deposits and withdrawals. It doesn’t take a genius to sum up the

deposits and subtract the withdrawals. Now imagine you are asked to write a program

to automatically distinguish photos of dogs from cats. You might want to write a

rule that checks for pointy versus floppy ears, for example. But how should you tell

the computer how to identify ears? Maybe you want to tell the computer to look

on the top of the animal’s head. But how do you instruct the computer to find a

head? What if the ears aren’t visible? What if the photo is of an alert Doberman with

pointy ears? While distinguishing a dog and cat is extremely easy for you, describing

algorithmically how to do so is not.

For this problem, it turns out to be easier to 1) collect many photos of dogs and cats

with correct labels and 2) write a learning algorithm for the computer that tunes the

parameters of a model mapping images to correct labels. By model, we simply mean

a parameterized (possibly stochastic) function fθ mapping from photos to labels (e.g.

a convolutional neural network).4 The learning algorithm to train this model typically

involves defining an “objective function” that is then maximized (or a “loss function”

that is minimized), such as the probability that your model assigns the correct label

to an image in your dataset. In addition to choosing the model parameterization
4There appears to be a wide cultural gap in the use of the word “model” in physics and machine

learning. In both cases, a model is a mathematical formalization of the relationship between several
variables. However, in physics, a model typically has very few parameters, and the parameters are
interpretable and set by carrying out a small number of precise experiments. Repetitions of these
experiments increase our collective belief over the particular, precise values of the model parameters
(the charge of the electron, for example, is measured to about 10 significant digits). In machine
learning, on the other hand, a model typically is vastly overparametrized, and the parameters are
uninterpretable and set by optimizing a loss over some large dataset. Repeatedly fitting a model
could be expected to lead to very different parameter values from experiment to experiment.
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and objective, you must also choose a procedure for changing the parameters of your

model to optimize your objective (e.g. stochastic gradient descent).

This combination of choosing a dataset, an objective function, a model, and an

optimization procedure charaterizes a large fraction of machine learning research

today. This approach has enabled computers to play video games (Mnih et al. 2016),

synthesize speech (van den Oord et al. 2016), read lips (Shillingford et al. 2018), play

board games at super-human level (Silver et al. 2016), and much more. Moreover, the

work of the next three chapters will all fall under this category.

1.2.2 Supervised, unsupervised, and reinforcement learning

It is common in machine learning to distinguish between three different types of

learning problems.

In supervised learning, we are supplied with a data set of N inputs xi and their

correct associated outputs yi. The goal is to take this data set {(xi, yi)}Ni=1 and fit a

model fθ to the data such that fθ(x) ≈ y by adjusting the parameters θ. This approach

is referred to as “supervised” because we are given the correct outputs yi. The image

classification problem in the last section is an example of supervised learning.

In unsupervised learning, no such labels are supplied. Instead, we are simply given

a data set {xi}Ni=1 and told to find “structure.” If this sounds open-ended, that’s

because it is. Much of the difficulty of unsupervised learning is in defining what

“structure” means. Clustering is an example of unsupervised learning.

In reinforcement learning (RL), we are supplied with an intermediate level of

feedback: a score. Consider learning to play a video game. In a supervised setting,

someone would tell us exactly what to do in order to perform well (e.g. “jump on

that platform and collect the key”). In an RL setting, we instead only receive points

in proportion to how well we did. The goal is to get as many points as possible. In

addition to this difference in feedback, RL settings typically also involve sequential
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decision-making. In (un)supervised learning, the data point we see at time t + 1

typically does not depend on the data point we receive or the label we apply to it

at time t. Instead we receive data points xi at random. In RL, however, we instead

navigate an “agent” through “states” st in an “environment”, taking “actions” at that

carry this agent (perhaps stochastically) to new states st+1. Thus, key features of RL

include long-term planning and exploration vs exploitation tradeoffs. In many settings,

there are multiple agents present and interacting with one another and the same

environment. This setting is known as “multi-agent reinforcement learning” (MARL)

and introduces new complexities such as deciding whether to cooperate or compete,

and inferring other agent’s knowledge and intentions through “theory of mind.”

The work in this thesis touches on each of these areas. In chapters 2 and 3, we

discuss work at the intersection of supervised and unsupervised learning, while in

chapter 4, we discuss work on multi-agent reinforcement learning.

1.2.3 Summary

Machine learning is about teaching machines to learn (duh) so that we can expand

the range of tasks they are able to perform beyond those for which we are able to

write an explicit algorithm. Tasks are typically categorized as supervised (explicit

feedback), unsupervised (no feedback), or reinforcement learning problems (implicit

feedback). In all three cases, much of this is done via optimization-based learning.

1.3 Information theory + machine learning

Information theory and machine learning have a long, interwoven history. This

should come as no surprise, since uncertainty (entropy) and dependence (mutual

information) are key concepts in learning. In fact, MacKay (2002) saw the fields as so

inseparable that he wrote a textbook covering both at once.
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Our own program of research lies exactly at this intersection. In the following

chapters, we employ the information-theoretic concepts of entropy (section 1.1.1)

and mutual information (section 1.1.2) in a variety of optimization-based learning

problems (section 1.2.1). Chapters 2 and 3 focus on problems that lie somewhere

between supervised and unsupervised learning, while chapter 4 focuses on (multi-agent)

reinforcement learning (section 1.2.2).
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Chapter 2

The deterministic information

bottleneck

In any problem of prediction, a primary question is how to select the right “features”

that make that prediction problem tractable. Historically, engineers might hand tune

such features (e.g. number of blue pixels in an image), and then run a simple predictive

model on top (e.g. linear regression). However, a more general and powerful approach

is to learn the useful features automatically from data. In machine learning, we refer

to such prediction problems as supervised learning (see section 1.2.2), and the subtask

of finding good features as feature selection or representation learning.

The information bottleneck is a formalization of the feature selection problem in

the language of information theory (Tishby et al. 1999) . Imagine we observe one

signal, X, and wish to predict another signal, Y , from our measurement; what features

of X should we pay attention to? Tishby, Pereria, and Bialek proposed to consider

the features as an encoding T of X, and to choose the mapping from X to T which

minimizes the objective LIB = I(X;T )− βI(T ;Y ). The first term in this objective

tells us that the features should be minimal in the sense that they encode as few

bits of the input as possible. The second term tells us that the features should be
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predictive in the sense that they contain information about the signal we wish to

predict. By measuring minimality as I(X;T ), the authors were implicitly “squeezing”

the communication channel between X and T (see chapter 1.1.2). The result was a

stochastic encoder qβ(T | X) which balanced the goals of minimality and prediction,

with the relative weighting dependent on the tradeoff parameter β.

I first encountered the information bottleneck when I became interested in for-

malizations of prediction in the brain. There were two things that struck me as odd.

First, why measure minimality with mutual information instead of entropy? In the

language of compression / source coding (see section 1.1.1), a minimal signal is one

with low entropy, because it can be represented with fewer symbols. In terms of neural

systems, this would mean being able to use fewer neurons. Second, why was the

optimal encoding stochastic? If the goal is to build informative, predictive features,

shouldn’t noise hurt?

My original thinking on this problem has evolved since then, but that is the setting

for the following chapter - how can we alter the information bottleneck picture on

representation learning to focus on minimal signals in the language of source coding?

This chapter appeared as Strouse and Schwab (2017).

Abstract

Lossy compression and clustering fundamentally involve a decision

about what features are relevant and which are not. The information

bottleneck method (IB) by Tishby, Pereira, and Bialek formalized this

notion as an information-theoretic optimization problem and proposed

an optimal tradeoff between throwing away as many bits as possible, and

selectively keeping those that are most important. In the IB, compression

is measured by mutual information. Here, we introduce an alternative

formulation that replaces mutual information with entropy, which we

call the deterministic information bottleneck (DIB), that we argue better
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captures this notion of compression. As suggested by its name, the solution

to the DIB problem turns out to be a deterministic encoder, or hard

clustering, as opposed to the stochastic encoder, or soft clustering, that

is optimal under the IB. We compare the IB and DIB on synthetic data,

showing that the IB and DIB perform similarly in terms of the IB cost

function, but that the DIB significantly outperforms the IB in terms of

the DIB cost function. We also empirically find that the DIB offers a

considerable gain in computational efficiency over the IB, over a range of

convergence parameters. Our derivation of the DIB also suggests a method

for continuously interpolating between the soft clustering of the IB and

the hard clustering of the DIB.

2.1 Introduction

Compression is a ubiquitous task for humans and machines alike (Cover and

Thomas 2006, MacKay 2002). For example, machines must turn the large pixel grids

of color that form pictures into small files capable of being shared quickly on the web

(Wallace 1991), humans must compress the vast stream of ongoing sensory information

they receive into small changes in the brain that form memories (Kandel et al. 2013),

and data scientists must turn large amounts of high-dimensional and messy data into

more manageable and interpretable clusters (MacKay 2002).

Lossy compression involves an implicit decision about what is relevant and what is

not (Cover and Thomas 2006, MacKay 2002). In the example of image compression,

the algorithms we use deem some features essential to representing the subject matter

well, and others are thrown away. In the example of human memory, our brains deem

some details important enough to warrant attention, and others are forgotten. And in
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the example of data clustering, information about some features is preserved in the

mapping from data point to cluster ID, while information about others is discarded.

In many cases, the criterion for “relevance” can be described as information about

some other variable(s) of interest. Let’s call X the signal we are compressing, T the

compressed version, Y the other variable of interest, and I(T ;Y ) the “information”

that T has about Y (we will formally define this later). For human memory, X

is past sensory input, T the brain’s internal representation (e.g. the activity of a

neural population, or the strengths of a set of synapses), and Y the features of the

future environment that the brain is interested in predicting, such as extrapolating

the position of a moving object. Thus, I(T ;Y ) represents the predictive power of the

memories formed Palmer et al. (2015). For data clustering, X is the original data,

T is the cluster ID, and Y is the target for prediction, for example purchasing or

ad-clicking behavior in a user segmentation problem. In summary, a good compression

algorithm can be described as a tradeoff between the compression of a signal and the

selective maintenance of the “relevant” bits that help predict another signal.

This problem was formalized as the “information bottleneck” (IB) by Tishby, Pereira,

and Bialek (Tishby et al. 1999). Their formulation involved an information-theoretic

optimazation problem, and resulted in an iterative soft clustering algorithm guaranteed

to converge to a local (though not necessarily global) optimum. In their cost functional,

compression was measured by the mutual information I(X;T ). This compression

metric has its origins in rate-distortion theory and channel coding, where I(X;T )

represents the maximal information transfer rate, or capacity, of the communication

channel between X and T (Cover and Thomas 2006). While this approach has its

applications, often one is more interested in directly restricting the amount of resources

required to represent T , represented by the entropy H(T ). This latter notion comes

from the source coding literature and implies a restriction on the representational cost

of T (Cover and Thomas 2006). In the case of human memory, for example, H(T )
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would roughly correspond to the number of neurons or synapses required to represent

or store a sensory signal X. In the case of data clustering, H(T ) is related to the

number of clusters.

In the following paper, we introduce an alternative formulation of the IB, called the

deterministic information bottleneck (DIB), replacing the compression measure I(X;T )

with H(T ), thus emphasizing contraints on representation, rather than communication.

Using a clever generalization of both cost functionals, we derive an iterative solution to

the DIB, which turns out to provide a hard clustering, or deterministic mapping from

X to T , as opposed to the soft clustering, or probabilitic mapping, that IB provides.

Finally, we compare the IB and DIB solutions on synthetic data to help illustrate

their differences.

2.2 The original information bottleneck (IB)

Given the joint distribution p(x, y), the encoding distribution q(t|x) is obtained

through the following “information bottleneck” (IB) optimization problem:

min
q(t|x)

L[q(t|x)] = I(X;T )− βI(Y ;T ) , (2.1)

subject to the Markov constraint T ↔ X ↔ Y . Here I(X;T ) denotes the mutual in-

formation betweenX and T , that is I(X;T ) ≡ H(T )−H(T |X) =
∑

x,t p(x, t) log
(

p(x,t)
p(x)p(t)

)
=

DKL[p(x, t) | p(x) p(t)],1 where DKL denotes the Kullback-Leibler divergence.2 The
1Implicit in the summation here, we have assumed that X, Y , and T are discrete. We will be

keeping this assumption throughout for convenience of notation, but note that the IB generalizes
naturally to X, Y , and T continuous by simply replacing the sums with integrals (see, for example,
?).

2For those unfamiliar with it, mutual information is a very general measure of how related two
variables are. Classic correlation measures typically assume a certain form of the relationship between
two variables, say linear, whereas mutual information is agnostic as to the details of the relationship.
One intuitive picture comes from the entropy decomposition: I(X;Y ) ≡ H(X) −H(X|Y ). Since
entropy measures uncertainty, mutual information measures the reduction in uncertainty in one
variable when observing the other. Moreover, it is symmetric (I(X;Y ) = I(Y ;X)), so the information
is mutual. Another intuitive picture comes from the DKL form: I(X;Y ) ≡ DKL[p(x, y) | p(x) p(y)].
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first term in the cost function is meant to encourage compression, while the second

relevance. β is a non-negative free parameter representing the relative importance

of compression and relevance, and our solution will be a function of it. The Markov

constraint simply enforces the probabilistic graphical structure of the task; the

compressed representation T is a (possibly stochastic) function of X and can only get

information about Y through X. Note that we are using p to denote distributions

that are given and fixed, and q to denote distributions that we are free to change and

that are being updated throughout the optimization process.

Through a standard application of variational calculus (see Section 2.A for a

detailed derivation of the solution to a more general problem introduced below), one

finds the formal solution:3

q(t|x) =
q(t)

Z(x, β)
exp[−βDKL[p(y|x) | q(y|t)]] (2.2)

q(y|t) =
1

q(t)

∑
x

q(t|x) p(x, y) , (2.3)

where Z(x, β) ≡ exp
[
−λ(x)
p(x)
− β∑y p(y | x) log p(y|x)

p(y)

]
is a normalization factor,

and λ(x) is a Lagrange multiplier that enters enforcing normalization of q(t | x).4 To

get an intuition for this solution, it is useful to take a clustering perspective - since

we are compressing X into T , many X will be mapped to the same T and so we can

think of the IB as “clustering” xs into their cluster labels t. The solution q(t|x) is

then likely to map x to t when DKL[p(y|x) | q(y|t)] is small, or in other words, when

the distributions p(y|x) and q(y|t) are similar. These distributions are similar to the

Since DKL measures the distance between two probability distributions, the mutual information
quantifies how far the relationship between x and y is from a probabilistically independent one,
that is how far the joint p(x, y) is from the factorized p(x) p(y). A very nice summary of mutual
information as a dependence measure is included in Kinney and Atwal (2014).

3For the reader familiar with rate-distortion theory, eqn 2.2 can be viewed as the solution to a
rate-distortion problem with distortion measure given by the KL-divergence term in the exponent.

4More explicitly, our cost function L also implicitly includes a term
∑
x λ(x) [1−

∑
t q(t|x)] and

this is where λ(x) comes in to the equation. See Section 2.A for details.
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extent that x and t provide similar information about y. In summary, inputs x get

mapped to clusters t that maintain information about y, as was desired.

This solution is “formal” because the first equation depends on the second and vice

versa. However, Tishby et al. (1999) showed that an iterative approach can be built

on the the above equations which provably converges to a local optimum of the IB

cost function (eqn. 2.1).

Starting with some initial distributions q(0)(t|x), q(0)(t), and q(0)(y|t), the nth

update is given by:5

q(n)(t|x) =
q(n−1)(t)

Z(n)(x, β)
exp
[
−βDKL

[
p(y|x) | q(n−1)(y|t)

]]
(2.4)

q(n)(t) =
∑
x

q(n)(t|x) p(x) (2.5)

q(n)(y|t) =
1

q(n)(t)

∑
x

q(n)(t|x) p(x, y) . (2.6)

Note that the first equation is the only “meaty” one; the other two are just there

to enforce consistency with the laws of probability (e.g. that marginals are related

to joints as they should be). In principle, with no proof of convergence to a global

optimum, it might be possible for the solution obtained to vary with the initialization,

but in practice, the cost function is “smooth enough” that this does not seem to

happen. This algorithm is summarized in algorithm 2.1. Note that while the general

solution is iterative, there is at least one known case in which an analytic solution is

possible, namely when X and Y are jointly Gaussian (Chechik et al. 2005).
5Note that, if at step m no xs are assigned to a particular t = t∗ (i.e. q(t | x) = 0 ∀x), then

q(m)(t∗) = q(m+1)(t∗) = 0. That is, no xs will ever again be assigned to t∗ (due to the q(n−1)(t) factor
in q(n−1)(t | x)). In other words, the number of ts “in use” can only decrease during the iterative
algorithm (or remain constant). Thus, it seems plausible that the solution will not depend on the
cardinality of T , provided it is chosen to be large enough.
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Algorithm 2.1 - The information bottleneck (IB) method.
Given p(x, y), β ≥ 0
Initialize q(0)(t | x)
q(0)(t) =

∑
x p(x) q(0)(t | x)

q(0)(y | t) = 1
q(0)(t)

∑
x p(x, y) q(0)(t | x)

n = 0
while not converged do
n = n+ 1
q(n)(t | x) = q(n−1)(t)

Z(x,β)
exp
[
−βDKL

[
p(y | x) | q(n−1)(y | t)

]]
q(n)(t) =

∑
x p(x) q(n)(t | x)

q(n)(y | t) = 1
q(n)(t)

∑
x q

(n)(t | x) p(x, y)

end while

In summary, given the joint distribution p(x, y), the IB method extracts a compres-

sive encoder q(t | x) that selectively maintains the bits from X that are informative

about Y . As the encoder is a function of the free parameter β, we can visualize

the entire family of solutions on a curve (figure 2.1), showing the tradeoff between

compression (on the x-axis) and relevance (on the y-axis), with β as an implicitly

varying parameter. For small β, compression is more important than prediction and we

find ourselves at the bottom left of the curve in the high compression, low prediction

regime. As β increases, prediction becomes more important relative to compression,

and we see that both I(X;T ) and I(T ;Y ) increase. At some point, I(T ;Y ) saturates,

because there is no more information about Y that can be extracted from X (either

because I(T ;Y ) has reached I(X;Y ) or because T has too small cardinality). In this

regime, the encoder will approach the trivially deterministic solution of mapping each

x to its own cluster. At any point on the curve, the slope is equal to β−1, which we

can read off directly from the cost functional. Note that the region below the curve is

shaded because this area is feasible; for suboptimal q(t | x), solutions will lie in this

region. Optimal solutions will of course lie on the curve, and no solutions will lie

above the curve.

Additional work on the IB has highlighted its relationship with maximum likelihood

on a multinomial mixture model (Slonim and Weiss 2002) and canonical correlation
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analysis (Creutzig et al. 2009) (and therefore linear Gaussian models (Bach and Jordan

2006) and slow feature analysis (Turner and Sahani 2007)). Applications have included

speech recognition (Hecht and Tishby 2005, Hecht et al. 2009), topic modeling (Slonim

and Tishby 2000b, 2001, Bekkerman et al. 2001, 2003), and neural coding (Schneidman

et al. 2001, Palmer et al. 2015). Most recently, the IB has even been proposed as

a method for benchmarking the performance of deep neural networks (Tishby and

Zaslavsky 2015).

0

I(X,Y)

0 log |T|
I(X;T)

I(
T

;Y
)

Figure 2.1: An illustrative IB curve. I(T ;Y ) is the relevance term from eqn 2.1;
I(X;T ) is the compression term. I(X;Y ) is an upper bound on I(T ;Y ) since T
only gets its information about Y via X. log(|T |), where |T | is the cardinality of the
compression variable, is a bound on I(X;T ) since I(X;T ) = H(T ) − H(T | X) ≤
H(T ) ≤ log(|T |).

2.3 The deterministic information bottleneck

Our motivation for introducing an alternative formulation of the information

bottleneck is rooted in the “compression term” of the IB cost function; there, the

minimization of the mutual information I(X;T ) represents compression. As discussed

above, this measure of compression comes from the channel coding literature and

implies a restriction on the communication cost between X and T. Here, we are

interested in the source coding notion of compression, which implies a restriction on

the representational cost of T . For example, in neuroscience, there is a long history of

work on “redundancy reduction” in the brain in the form of minimizing H(T ) (Barlow

1981, 2001a,b).
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Let us call the original IB cost function LIB, that is LIB ≡ I(X;T ) − βI(T ;Y ).

We now introduce the deterministic information bottleneck (DIB) cost function:

LDIB[q(t|x)] ≡ H(T )− βI(T ;Y ) , (2.7)

which is to be minimized over q(t | x) and subject to the same Markov constraint

as the original formulation (eqn 2.1). The motivation for the “deterministic” in its

name will become clear in a moment.

To see the distinction between the two cost functions, note that:

LIB − LDIB = I(X;T )−H(T ) (2.8)

= −H(T | X) , (2.9)

where we have used the decomposition of the mutual information I(X;T ) =

H(T ) −H(T | X). H(T | X) is sometimes called the “noise entropy” and measures

the stochasticity in the mapping from X to T . Since we are minimizing these cost

functions, this means that the IB cost function encourages stochasticity in the encoding

distribution q(t | x) relative to the DIB cost function. In fact, we will see that by

removing this encouragement of stochasticity, the DIB problem actually produces a

deterministic encoding distribution, i.e. an encoding function, hence the “deterministic”

in its name.

Naively taking the same variational calculus approach as for the IB problem, one

cannot solve the DIB problem.6 To make this problem tractable, we are going to

define a family of cost functions of which the IB and DIB cost functions are limiting
6When you take the variational derivative of LDIB + Lagrange multiplier term with respect to

q(t | x) and set it to zero, you get no explicit q(t | x) term, and it is therefore not obvious how to
solve these equations. We cannot rule that that approach is possible, of course; we have just here
taken a different route.
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cases. That family, indexed by α, is defined as:7

Lα ≡ H(T )− αH(T | X)− βI(T ;Y ) . (2.10)

Clearly, LIB = L1. However, instead of looking at LDIB as the α = 0 case, we’ll

define the DIB solution qDIB(t | x) as the α→ 0 limit of the solution to the generalized

problem qα(t | x):8

qDIB(t | x) ≡ lim
α→0

qα(t | x) . (2.11)

Taking the variational calculus approach to minimizing Lα (under the Markov

constraint), we get the following solution for the encoding distribution (see Section 2.A

for the derivation and explicit form of the normalization factor Z(x, a, β)):

qα(t|x) =
1

Z(x, α, β)
exp

[
1

α
(log qα(t)− βDKL[p(y|x) | qα(y|t)])

]
(2.12)

qα(y|t) =
1

qα(t)

∑
x

p(y|x) qα(t|x) p(x) . (2.13)

Note that the last equation is just eqn 2.3, since this just follows from the Markov

constraint. With α = 1, we can see that the first equation just becomes the IB solution

from eqn 2.2, as should be the case.
7Note that for α < 1, we cannot allow T to be continuous since H(T ) can become infinitely

negative, and the optimal solution in that case will trivially be a delta function over a single value of
T for all X, across all values of β. This is in constrast to the IB, which can handle continuous T . In
any case, we continue to assume discrete X, Y , and T for convenience.

8Note a subtlety here that we cannot claim that the qDIB is the solution to LDIB, for although
LDIB = limα→0 Lα and qDIB = limα→0 qα, the solution of the limit need not be equal to the limit of
the solution. It would, however, be surprising if that were not the case.
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Before we take the α → 0 limit, note that we can now write a generalized IB

iterative algorithm (indexed by α) which includes the original as a special case (α = 1):

q(n)α (t|x) =
1

Z(x, α, β)
exp

[
1

α

(
log q(n−1)α (t)− βDKL

[
p(y|x) | q(n−1)α (y|t)

])]
(2.14)

q(n)α (t) =
∑
x

p(x) q(n)α (t|x) (2.15)

q(n)α (y|t) =
1

q
(n)
α (t)

∑
x

q(n)α (t|x) p(x, y) . (2.16)

This generalized algorithm can be used in its own right, however we will not discuss

that option further here.

For now, we take the limit α → 0 and see that something interesting happens

with qα(t | x) - the argument of the exponential begins to blow up. For a fixed x, this

means that q(t | x) will collapse into a delta function at the value of t which maximizes

log q(t)− βDKL[p(y | x) | q(y | t)]. That is:

lim
α→0

qα(t|x) = f : X → T, (2.17)

where:

f(x) = t∗ = argmax
t

(log q(t)− βDKL[p(y|x) | q(y|t)]) . (2.18)

So, as anticipated, the solution to the DIB problem is a deterministic encoding

distribution. The log q(t) above encourages that we use as few values of t as possible,

via a “rich-get-richer” scheme that assigns each x preferentially to a t already with

many xs assigned to it. The KL divergence term, as in the original IB problem, just

makes sure we pick ts which retain as much information from x about y as possible.

The parameter β, as in the original problem, controls the tradeoff between how much

we value compression and prediction.

Also like in the original problem, the solution above is only a formal solution, since

eqn 2.12 depends on eqn 2.13 and vice versa. So we will again need to take an iterative
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approach; in analogy to the IB case, we repeat the following updates to convergence

(from some initialization):9

f (n)(x) = argmax
t

(
log q(n−1)(t)− βDKL

[
p(y|x) | q(n−1)(y|t)

])
(2.19)

q(n)(t|x) = δ
(
t− f (n)(x)

)
(2.20)

q(n)(t) =
∑
x

q(n)(t|x) p(x) (2.21)

=
∑

x:f (n)(x)=t

p(x) (2.22)

q(n)(y|t) =
1

q(n)(t)

∑
x

q(n)(t | x) p(x, y) (2.23)

=

∑
x:f (n)(x)=t p(x, y)∑
x:f (n)(x)=t p(x)

. (2.24)

This process is summarized in Algorithm 2.2.

Note that the DIB algorithm also corresponds to “clamping” IB at every step by

assigning each x to its highest probability cluster t. We can see this by taking the

argmax of the logarithm of q(t | x) in eqn 2.2, noting that the argmax of a positive

function is equivalent the argmax of its logarithm, discarding the log(Z(x, β)) term

since it doesn’t depend on t, and seeing that the result corresponds to eqn 2.18. We

emphasize, however, that this is not the same as simply running the IB algorithm

to convergence and then clamping the resulting encoder; that would, in most cases,

produce a suboptimal, “unconverged” deterministic solution.

Like with the IB, the DIB solutions can be plotted as a function of β. However,

in this case, it is more natural to plot I(T ;Y ) as a function of H(T ), rather than

I(X;T ). That said, in order to compare the IB and DIB, they need to be plotted in
9As with the IB, the DIB has the property that once a cluster goes unused, it will not be brought

back into use in future steps. That is, if q(m)(t) = 0, then log q(m)(t) = −∞ and q(m+1)(t | x) = 0 ∀x.
So once again, one should conservatively choose the cardinality of T to be “large enough”; for both
the IB and DIB, we chose to set it equal to the cardinality of X.
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the same plane. When plotting in the I(X;T ) plane, the DIB curve will of course lie

below the IB curve, since in this plane, the IB curve is optimal; the opposite will be

true when plotting in the H(T ) plane. Comparisons with experimental data can be

performed in either plane.

Algorithm 2.2 - The deterministic information bottleneck (DIB) method.
Given p(x, y), β ≥ 0
Initialize f (0)(x)
Set q(0)(t) =

∑
x:f (0)(x)=t p(x)

Set q(0)(y | t) =

∑
x:f(0)(x)=t

p(x,y)∑
x:f(0)(x)=t

p(x)

n = 0
while not converged do
n = n+ 1
d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
`
(n−1)
β (x, t) ≡ log q(t)− βd(n−1)(x, t)
f (n)(x) = argmax

t
`
(n−1)
β (x, t)

q(n)(t) =
∑

x:f (n)(x)=t p(x)

q(n)(y | t) =

∑
x:f(n)(x)=t

p(x,y)∑
x:f(n)(x)=t

p(x)

end while

2.4 Comparison of IB and DIB

To get an idea of how the IB and DIB solutions differ in practice, we generated a

series of random joint distributions p(x, y), solved for the IB and DIB solutions for each,

and compared them in both the IB and DIB plane. To generate the p(x, y), we first

sampled p(x) from a symmetric Dirichlet distribution with concentration parameter

αx (so p(x) ∼ Dir[αx]), and then sampled each row of p(y | x) from another symmetric

Dirichlet distribution with concentration parameter α(i)
y (so p(y | xi) ∼ Dir

[
α
(i)
y

]
). In

the experiments shown here, we set αx to 1000, so that each xi was approximately

equally likely, and we set α(i)
y to be equally spaced logarithmically between 10−1.3 and

101.3, in order to provide a range of informativeness in the conditionals. We set the

cardinalities of X and Y to |X| = 256 and |Y | = 32, with |X| > |Y | for two reasons.
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First, this encourages overlap between the conditionals p(y|x), which leads to a more

interesting clustering problem. Second, in typical applications, this will be the case,

such as in document clustering where there are often many more documents than

vocabulary words. Since the number of clusters in use for both IB and DIB can only

decrease from iteration to iteration (see footnote 9), we always initialized |T | = |X|.10

For the DIB, we initialized the cluster assignments to be as even across the cluster as

possible, i.e. each data points belonged to its own cluster. For IB, we initialized using

a soft version of the same procedure, with 75% of each conditional’s probability mass

assigned to a unique cluster, and the remaining 25% a normalized uniform random

vector over the remaining |T | − 1 clusters.

An illustrative pair of solutions is shown in figure 2.2. The key feature to note is

that, while performance of the IB and DIB solutions are very similar in the IB plane,

their behavior differs drastically in the DIB plane.

Perhaps most unintuitive is the behavior of the IB solution in the DIB plane,

where from an entropy perspective, the IB actually “decompresses” the data (i.e.

H(T ) > H(X)). To understand this behavior, recall that the IB’s compression term

is the mutual information I(X,T ) = H(T ) − H(T | X). This term is minimized

by any q(t | x) that maps ts independently of xs. Consider two extremes of such

mappings. One is to map all values of X to a single value of T ; this leads to

H(T ) = H(T | X) = I(X,T ) = 0. The other is to map each value of X uniformly

across all values of T ; this leads to H(T ) = H(T | X) = log |T | and I(X,T ) = 0.

In our initial studies, the IB consistently took the latter approach.11 Since the DIB

cost function favors the former approach (and indeed the DIB solution follows this

approach), the IB consistently performs poorly by the DIB’s standards. This difference
10An even more efficient setting might be to set the cardinality of T based on the entropy of X,

say |T | = ceiling(exp(H(X))), but we didn’t experiment with this.
11Intuitively, this approach is “more random” and is therefore easier to stumble upon during

optimization.
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is especially apparent at small β, where the compression term matters most, and as β

increases, the DIB and IB solutions converge in the DIB plane.
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Figure 2.2: Example IB and DIB solutions. Left : IB plane. Right : DIB plane.
Upper limit of the y-axes is I(X, Y ), since this is the maximal possible value of I(T ;Y ).
Upper limit of the x-axes is log(|T |), since this is the maximal possible value of H(T )
and I(X,T ) (the latter being true since I(X,T ) is bounded above by both H(T ) and
H(X), and |T | < |X|). The dashed vertical lines mark H(X), which is both an upper
bound for I(X,T ) and a natural comparison for H(T ) (since to place each data point
in its own cluster, we need H(T ) = H(X)).

To encourage the IB to perform closer to DIB optimality at small β, we next

altered our initialization scheme of q(t | x) to one biased towards single-cluster solutions;

instead of each xi having most of its probability mass on a unique cluster ti, we placed

most of the probability mass for each xi on the same cluster t∗. The intended effect

was to start the IB closer to solutions in which all data points were mapped to a

single cluster. Results are shown in figure 2.3. Here, p0 is the amount of probability

mass placed on the cluster t∗, that is q(t∗ | x) = p0, ∀x; the probability mass for the

remaining |T |−1 clusters was again initialized to a normalized uniform random vector.

“random” refers to an initialization which skips placing the p0 mass and just initializes

each q(t | xi) to a normalized uniform random vector.

We note several features. First, although we can see a gradual shift of the IB

towards DIB-like behavior in the DIB plane as p0 → 1, the IB solutions never quite

reach the performance of DIB. Moreover, as p0 → 1, the single-cluster initializations
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exhibit a phase transition in which, regardless of β, they “skip” over a sizable fraction

of lower-I(Y ;T ) solutions that are picked up by DIB. Third, even for higher-I(Y ;T )

solutions, the single-cluster initializations seem to perform suboptimally, not quite

extracting all of the information I(X;Y ), as DIB and the multi-cluster initialization

from the previous section do; this can be seen in both the IB and DIB plane.
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Figure 2.3: Example IB and DIB solutions across different IB initializations.
Details identical to Figure 2.2, except colors represent different initializations for the
IB, as described in the text.

To summarize, the IB and DIB perform similarly by the IB standards, but the DIB

tends to outperform the IB dramatically by the DIB’s standards. Careful initialization

of the IB can make up some of the difference, but not all.

It is also worth noting that, across all the datasets we tested, the DIB also tended

to converge faster, as illustrated in figure 2.4. The DIB speedup over IB varied

depended on the convergence conditions. In our experiments, we defined convergence

as when the relative step-to-step change in the cost functional L was smaller than

some threshold ctol, that is when Ln−1−Ln

Ln−1
< ctol at step n. In the results above,

we used ctol = 10−3. In figure 2.4, we vary ctol, with the IB initialization scheme

fixed to the original “multi-cluster” version, to show the effect on the relative speedup

of DIB over IB. While DIB remained ≈2-5x faster than IB in all cases tested, that

speedup tended to be more pronounced with lower ctol. Since the ideal convergence
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conditions would probably vary by dataset size and complexity, it is difficult to make

any general conclusions, though our experiments do at least suggest that DIB offers a

computational advantage over IB.
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Figure 2.4: Fit times for IB and DIB. Cumulative distribution function of fit times
across β, for a variety of settings of the convergence tolerance. Note that absolute
numbers here depend on hardware, so we emphasize only relative comparisons of IB
vs DIB. Note also that across the range of ctol values we tested here, the (D)IB curves
vary by less than the width of the data points, and so we omit them.

2.5 Related work

The DIB is not the first hard clustering version of IB.12 Indeed, the agglomerative

information bottleneck (AIB) (Slonim and Tishby 2000a) also produces hard clustering

and was introduced soon after the IB. Thus, it is important to distinguish between

the two approaches. AIB is a bottom-up, greedy method which starts with all data

points belonging to their own clusters and iteratively merges clusters in a way which

maximizes the gain in relevant information. It was explicitly designed to produce a

hard clustering. DIB is a top-down method derived from a cost function that was not

designed to produce a hard clustering. Our starting point was to alter the IB cost

function to match the source coding notion of compression. The emergence of hard

clustering in DIB is itself a result. Thus, while AIB does provide a hard clustering
12In fact, even the IB itself produces a hard clustering in the large β limit. However, it trivially

assigns all data points to their own clusters.
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version of IB, DIB contributes the following in addition: 1) Our study emphasizes

why a stochastic encoder is optimal for IB, namely due to the noise entropy term. 2)

Our study provides a principled, top-down derivation of a hard clustering version of

IB, based upon an intuitive change to the cost function. 3) Our non-trivial derivation

also provides a cost function and solution which interpolates between DIB and IB, by

adding back the noise entropy continuously, i.e. with 0 < α < 1. This interpolation

may be viewed as adding a regularization term to DIB, one that may perhaps be useful

in dealing with finitely sampled data. Another interpretation of the cost function with

intermediate α is as a penalty on both the mutual information between X and T and

the entropy of the compression, H(T ).

The original IB also provides a deterministic encoding upon taking the limit β →∞

that corresponds to the causal-state partition of histories (Still et al. 2010). However,

this is the limit of no compression, whereas our approach allows for an entire family

of deterministic encoders with varying degrees of compression.

2.6 Discussion

Here we have introduced the deterministic information bottleneck (DIB) as an

alternative to the information bottleneck (IB) for compression and clustering. We

have argued that the DIB cost function better embodies the goal of lossy compression

of relevant information, and shown that it leads to a non-trivial deterministic version

of the IB. We have compared the DIB and IB solutions on synthetic data and found

that, in our experiments, the DIB performs nearly identically to the IB in terms of

the IB cost function, but far superior in terms of its own cost function. We also noted

that the DIB achieved this performance at a computational efficiency 2-5x better than

the IB.

30



Of course, in addition to the studies with synthetic data here, it is important

to compare the DIB and IB on real world datasets as well to see whether the

DIB’s apparent advantages hold, for example with datasets that have more explicit

hierarchical structure for both algorthms to exploit, such as in topic modelling (Blei

et al. 2004, Slonim and Weiss 2002).

One particular application of interest is maximally informative clustering, where it

would be interesting to know how IB and DIB relate to classic clustering algorithms

such as k-means (Strouse and Schwab 2018). Previous work has, for example, offered

a principled way of choosing the number of clusters based on the finiteness of the data

(Still and Bialek 2004), and similarly interesting results may exist for the DIB. More

generally, there are learning theory results showing generalization bounds on IB for

which an analog on DIB would be interesting as well (Shamir et al. 2010).

Another potential area of application is modeling the extraction of predictive

information in the brain (which is one particular example in a long line of work on

the exploitation of environmental statistics by the brain (Barlow 1981, 2001a,b, Atick

and Redlich 1992, Olshausen and Field 1996, 1997, 2004, Simoncelli and Olshausen

2001)). There, X would be the stimulus at time t, Y the stimulus a short time in the

future t+ τ , and T the activity of a population of sensory neurons. One could even

consider neurons deeper in the brain by allowing X and Y to correspond not to an

external stimulus, but to the activity of upstream neurons. An analysis of this nature

using retinal data was recently performed with the IB (Palmer et al. 2015). It would

be interesting to see if the same data corresponds better to the behavior of the DIB,

particularly in the DIB plane where the IB and DIB differ dramatically.

We close by noting that DIB is an imperfect name for the algorithm introduced

here for a couple of reasons. First, there do exist other deterministic limits and

approximations to the IB (see, for example, the discussion of the AIB in section 2.5),

and so we hesitate to use the phrase “the” deterministic IB. Second, our motivation
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here was not to create a deterministic version of IB, but instead to alter the cost

function in a way that better encapsulates the goals of certain problems in data

analysis. Thus, the deterministic nature of the solution was a result, not a goal. For

this reason, “entropic bottleneck” might also be an appropriate name.
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Appendix

2.A Derivation of generalized IB solution

Given p(x, y) and subject to the Markov constraint T ↔ X ↔ Y , the generalized

IB problem is:

min
q(t|x)

L[q(t|x)] = H(T )− αH(T |X)− βI(Y ;T )−
∑
x,t

λ(x) q(t|x) , (2.25)

where we have now included the Lagrange multiplier term (which enforces normal-

ization of q(t|x)) explicitly. The Markov constraint implies the following factorizations:

q(t|y) =
∑
x

q(t|x) p(x|y) (2.26)

q(t) =
∑
x

q(t|x) p(x) , (2.27)

which give us the following useful derivatives:

δq(t|y)

δq(t|x)
= p(x|y) (2.28)

δq(t)

δq(t|x)
= p(x) . (2.29)
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Now taking the derivative of the cost function with respect to the encoding

distribution, we get:

δL

δq(t|x)
= − δ

δq(t|x)

∑
t

q(t) log q(t)− δ

δq(t|x)

∑
x,t

λ(x) q(t|x) (2.30)

+ α
δ

δq(t|x)

∑
x,t

q(t|x) p(x) log q(t|x) (2.31)

− β δ

δq(t|x)

∑
y,t

q(t|y) p(y) log

[
q(t|y)

q(t)

]
(2.32)

= − log q(t)
δq(t)

δq(t|x)
− q(t) δ log q(t)

δq(t|x)
− λ(x)

δq(t|x)

δq(t|x)
(2.33)

+ α

[
p(x) log q(t|x)

δq(t|x)

δq(t|x)
+ q(t|x) p(x)

δ log q(t|x)

δq(t|x)

]
(2.34)

− β
∑
y

[
p(y) log

[
q(t|y)

q(t)

]
δq(t|y)

δq(t|x)

]
(2.35)

+ β
∑
y

[
q(t|y) p(y)

δ log q(t|y)

δq(t|x)
+ q(t|y) p(y)

δ log q(t)

δq(t|x)

]
(2.36)

= −p(x) log q(t)− p(x)− λ(x) + α [p(x) log q(t|x) + p(x)] (2.37)

− β
∑
y

[
p(y) log

[
q(t|y)

q(t)

]
p(x|y) + p(y) p(x|y)− q(t|y) p(y)

p(x)

q(t)

]
(2.38)

= −p(x) log q(t)− p(x)− λ(x) + α [p(x) log q(t|x) + p(x)] (2.39)

− βp(x)

[∑
y

p(y|x) log

[
q(t|y)

q(t)

]
+
∑
y

p(y|x)−
∑
y

q(y|t)
]

(2.40)

= p(x)

[
−1− log q(t)− λ(x)

p(x)
+ α log q(t|x) + α− β

[∑
y

p(y|x) log

[
q(t|y)

q(t)

]]]
.

(2.41)

Setting this to zero implies that:

α log q(t|x) = 1− α + log q(t) +
λ(x)

p(x)
+ β

[∑
y

p(y|x) log

[
q(t|y)

q(t)

]]
. (2.42)
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We want to rewrite the β term as a KL divergence. First, we will need that

log
[
q(t|y)
q(t)

]
= log

[
q(t,y)
q(t)p(y)

]
= log

[
q(y|t)
p(y)

]
. Second, we will add and subtract β

∑
y p(y|x) log

[
p(y|x)
p(y)

]
.

This gives us:

α log q(t|x) = 1− α + log q(t) +
λ(x)

p(x)
+ β

∑
y

p(y|x) log

[
p(y|x)

p(y)

]
(2.43)

− β
[∑

y

p(y|x) log

[
p(y|x)

q(y|t)

]]
. (2.44)

The second β term is now just DKL[p(y|x) | q(y|t)]. Dividing both sides by α, this

leaves us with the equation:

log q(t|x) = z(x, α, β) +
1

α
log q(t)− β

α
DKL[p(y | x) |q(y|t)] , (2.45)

where we have absorbed all of the terms that don’t depend on t into a single factor:

z(x, α, β) ≡ 1

α
− 1 +

λ(x)

αp(x)
+
β

α

∑
y

p(y | x) log

[
p(y | x)

p(y)

]
. (2.46)

Solving for q(t|x), we get:

q(t|x) = exp[z] exp

[
1

α
(log q(t)− βDKL[p(y|x) | q(y|t)])

]
(2.47)

=
1

Z
exp

[
1

α
(log q(t)− βDKL[p(y|x) | q(y|t)])

]
, (2.48)

where:

Z(x, α, β) ≡ exp[−z] (2.49)

is just a normalization factor. Now that we’re done with the general derivation,

let’s add a subscript to the solution to distinguish it from the special cases of the IB
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and DIB.

qα(t|x) =
1

Z(x, α, β)
exp

[
1

α
(log q(t)− βDKL[p(y|x) | q(y|t)])

]
. (2.50)

The IB solution is then:

qIB(t|x) = qα=1(t|x) =
q(t)

Z
exp[−βDKL[p(y|x) | q(y|t)]] , (2.51)

while the DIB solution is:

qDIB(t|x) = lim
α→0

qα(t|x) = δ(t− t∗(x)) , (2.52)

with:

t∗(x) = argmax
t

(log q(t)− βDKL[p(y|x) | q(y|t)]) . (2.53)
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Chapter 3

The information bottleneck and

geometric clustering

In the previous chapter, we introduced the deterministic information bottleneck

(DIB). Compared to the original information bottleneck (IB), it 1) is restricted to

discrete encodings T , 2) prunes the number of dimensions of T used automatically,

and 3) produces hard assignments of inputs to the encodings. These three features

make clustering a natural application. In clustering problems, we are given some data

points {xi}Ni=1 and we wish to find “structure” in the form of nc groups, or “clusters”,

that are more similar to one another than to members of other groups. The problems

are both to choose the number of groups nc as well as the assignments of data points

to clusters.

However, phrasing clustering in the language of (D)IB is non-trivial. First, we

introduced DIB and IB as approaches to supervised learning, and yet clustering is a

problem of unsupervised learning. If we are only given the data points {xi}Ni=1, what

should, in the language of (D)IB, X and Y be? Second, the data points {xi}Ni=1 often

live in a space endowed with some sort of geometry in which there is naturally a notion

of distance. How should that be incorporated into the picture?
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We became interested in this question after writing the previous chapter, and

quickly discovered a paper claiming that IB was equivalent (in certain limits) to a

classic clustering algorithm called k-means (Still et al. 2003). This introduced several

questions to us. First, if IB is equivalent to k-means, what is DIB equivalent to?

Second, how could a stochastic algorithm like IB be equivalent to a deterministic

one like k-means? Investigating these two questions led us to find several errors in

Still et al. (2003) which ultimately nullified the claim of an IB / k-means equivalence.

However, in understanding these errors, we were able to understand how to fix them

and build on much of what was correct about their setup to properly phrase geometric

clustering in the language of information theory.

This chapter has been accepted for publication as Strouse and Schwab (2018).

Abstract

The information bottleneck (IB) approach to clustering takes a joint dis-

tribution P (X,Y ) and maps the data X to cluster labels T which retain

maximal information about Y (Tishby et al. 1999). This objective results

in an algorithm that clusters data points based upon the similarity of their

conditional distributions P (Y | X). This is in contrast to classic “geometric

clustering” algorithms such as k-means and gaussian mixture models (GMMs)

which take a set of observed data points {xi}i=1:N and cluster them based

upon their geometric (typically Euclidean) distance from one another. Here,

we show how to use the deterministic information bottleneck (DIB) (Strouse

and Schwab 2017), a variant of IB, to perform geometric clustering, by choosing

cluster labels that preserve information about data point location on a smoothed

dataset. We also introduce a novel intuitive method to choose the number

of clusters, via kinks in the information curve. We apply this approach to a

variety of simple clustering problems, showing that DIB with our model selection

procedure recovers the generative cluster labels. We also show that, for one

simple case, DIB interpolates between the cluster boundaries of GMMs and
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k-means in the large data limit. Thus, our IB approach to clustering also provides

an information-theoretic perspective on these classic algorithms.

3.1 Introduction

Unsupervised learning is a crucial component of building intelligent systems (LeCun

2016), since such systems need to be able to leverage experience to improve performance

even in the absence of feedback. One aspect of doing so is discovering discrete structure

in data, a problem known as clustering (MacKay 2002). In the typical setup, one is

handed a set of data points {xi}Ni=1, and asked to return a mapping from data point

label i to a finite set of cluster labels c. The most basic approaches include k-means

and gaussian mixture models (GMMs). GMMs cluster data based on maximum

likelihood fitting of a probabilistic generative model. k-means can either be thought

of as directly clustering data based on geometric (often Euclidean) distances between

data points, or as a special case of GMMs with the assumptions of evenly sampled,

symmetric, equal variance components.

The information bottleneck (IB) is an information-theoretic approach to clustering

data X that optimizes cluster labels T to preserve information about a third “target

variable” of interest Y . The resulting (soft) clustering groups data points based on

the similarity in their conditional distributions over the target variable through the

KL divergence, KL[p(y | xi) | p(y | xj)]. An IB clustering problem is fully specified by

the joint distribution P (X, Y ) and the tradeoff parameter β quantifying the relative

preference for fewer clusters and more informative ones.

At first glance, it is not obvious how to use this approach to cluster geometric

data, where the input is a set of data point locations {xi}Ni=1. For example, what is

the target variable Y that our clusters should retain information about? What should

P (X, Y ) be? And how should one choose the tradeoff parameter β?

39



Still et al. (2003) were the first to attempt to do geometric clustering with IB, and

claimed an equivalence (in the large data limit) between IB and k-means. Unfortunately,

while much of their approach is correct, it contained some fundamental errors that

nullify the main results. In the next section, we describe those errors and how to correct

them. Essentially, their approach did not properly translate geometric information

into a form that could be used correctly by an information-theoretic algorithm.

In addition to fixing this issue, we also choose to use a recently introduced variant

of the information bottleneck called the deterministic information bottleneck (DIB)

(Strouse and Schwab 2017). We make this choice due to the different way in which IB

and DIB use the number of clusters provided to them. IB is known to use all of the

clusters it has access to, and thus clustering with IB requires a search both over the

number of clusters Nc as well as the the parsimony-informativeness tradeoff parameter

β (Slonim et al. 2005). DIB on the other hand has a built-in preference for using as

few clusters as it can, and thus only requires a parameter search over β. Moreover,

DIB’s ability to select the number of clusters to use for a given β leads to a intuitive

model selection heuristic based on the robustness of a clustering result across β that

we show can recover the generative number of clusters in many cases.

In the next section, we more formally define the geometric clustering problem,

the IB approach of Still et al. (2003), and our own DIB approach. In section 3.3, we

show that our DIB approach to geometric clustering behaves intuitively and is able to

recover the generative number of clusters with only a single free parameter (the data

smoothing scale s). In section 3.4, we discuss the relationship between our approach

and GMMs and k-means, proving that at least in one simple case, DIB interpolates

between GMM and k-means cluster boundaries by varying the data smoothing scale

s. Our approach thus provides a novel information-theoretic approach to geometric

clustering, as well as an information-theoretic perspective on these classic clustering

methods.
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3.2 Geometric clustering with the (deterministic) in-

formation bottleneck

In a geometric clustering problem, we are given a set of N observed data points

{xi}i=1:N and asked to provide a weighting q(c | i) that categorizes data points into

(possibly multiple) clusters such that data points “near” one another are in the same

cluster. The definition of “near” varies by algorithm: for k-means, for example, points

in a cluster are closer to their own cluster mean than to any other cluster mean.

In an information bottleneck (IB) problem, we are given a joint distribution

P (X, Y ) and asked to provide a mapping q(t | x) such that T contains the “relevant”

information in X for predicting Y . This goal is embodied by the information-theoretic

optimization problem:

q∗IB(t | x) = argmin
q(t|x)

I(X,T )− βI(T, Y ) , (3.1)

subject to the Markov constraint T ↔ X ↔ Y . β is a free parameter that allows

for setting the desired balance between the compression encouraged by the first term

and the relevance encouraged by the second; at small values, we throw away most

of X in favor of a succint representation for T , while for large values of β, we retain

nearly all the information that X has about Y .

This approach of squeezing information through a latent variable bottleneck might

remind some readers of a variational autoencoder (VAE) (Kingma and Welling 2013),

and indeed IB has a close relationship with VAEs. As pointed out in (Alemi et al. 2016),

a variational version of IB can essentially be seen as the supervised generalization of a

VAE, which is typically an unsupervised algorithm.

41



We are interested in performing geometric clustering with the information bottle-

neck. For the purposes of this paper, we will focus on a recent alternative formulation

of the IB, called the deterministic information bottleneck (DIB) (Strouse and Schwab

2017). We do this because the DIB’s cost function more directly encourages the use of

as few clusters as possible, so initialized with nmax
c clusters, it will typically converge

to a solution with far fewer. Thus, it has a form of model selection built in that will

prove useful for geometric clustering (Strouse and Schwab 2017). IB, on the other

hand, will tend to use all nmax
c clusters, and thus requires an additional search over

this parameter (Slonim et al. 2005). DIB also differs from IB in that it leads to a hard

clustering instead of a soft clustering.

Formally, the DIB setup is identical to that of IB except that the mutual information

term I(X;T ) in the cost functional is replaced with the entropy H(T ):

q∗DIB(t | x) = argmin
q(t|x)

H(T )− βI(T, Y ) . (3.2)

This change to the cost functional leads to a hard clustering with the form (Strouse

and Schwab 2017):

q∗DIB(t | x) = δ(t− t∗(x)) (3.3)

t∗ = argmax
t

log q(t)− βd(x, t) (3.4)

d(x, t) ≡ KL[p(y | x) | q(y | t)] (3.5)

q(t) =
∑
x

q(t | x) p(x) (3.6)

q(y | t) =
1

q(t)

∑
x

q(t | x) p(x) p(y | x) , (3.7)
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where the above equations are to be iterated to convergence from some initialization.

The IB solution (Tishby et al. 1999) simply replaces the first two equations with:

q∗IB(t | x) =
q(t)

Z(x, β)
e−βd(x,t), (3.8)

which can be seen as replacing the argmax in DIB with an exponential and a soft

max.

The (D)IB is referred to as a “distributional clustering” algorithm (Slonim and

Tishby 2001) due to the KL divergence term d (x, t) = KL[p(y | x) | q(y | t)], which can

be seen as measuring how similar the data point conditional distribution p(y | x) is to

the cluster conditional, or mixture of data point conditionals, q(y | t) =
∑

x q(x | t) p(y | x).

That is, a candidate point x′ will be assigned to a cluster based upon how similar its

conditional p
(
y | x′

)
is to the conditionals p(y | x) for the data points x that make up

that cluster. Thus, both DIB and IB cluster data points based upon the conditionals

p(y | x).

To apply (D)IB to a geometric clustering problem, we must choose how to map the

geometric clustering dataset {xi}i=1:N to an appropriate IB dataset P (X, Y ). First,

what should X and Y be? Since X is the data being clustered by IB, we’ll choose that

to be the data point index i. As for the target variable Y that we wish to maintain

information about, it seems reasonable to choose the data point location x (though

we will discuss alternative choices later). Thus, we want to cluster data indices i into

cluster indices c in a way that maintains as much possible info about the location x

as possible (Still et al. 2003).

Now, how should we choose the joint distribution p(i,x) = p(x | i) p(i)? At first

glance, one might choose p(x | i) = δxxi
, since data point i was observed at location xi.

The reason not to do this lies with the fact that (D)IB is a distributional clustering
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algorithm, as discussed two paragraphs above. Data points are compared to one

another through their conditionals p(x | i), and with the choice of a delta function,

there will be no overlap unless two data points are on top of one another. That is,

choosing p(x | i) = δxxi
leads to a KL divergence that is either infinite for data points

at different locations, or zero for data points that lie exactly on top of one another,

i.e. KL[p(x | i) | p(x | j)] = δxixj
. Trivially, the resulting clustering would assign each

data point to its own cluster, grouping only data points that are identical. Put another

way, all relational information in an IB problem lies in the joint distribution P (X, Y ).

If one wants to perform geometric clustering with an IB approach, then geometric

information must somehow be injected into that joint distribution, and a series of

delta functions does not do that. A previous attempt at linking IB and k-means

made this mistake (Still et al. 2003). Subsequent algebraic errors were tantamount to

incorrectly introducting geometric information into IB, precisely in the way that such

geometric information appears in k-means, and resulting in an algorithm that is not

IB. We describe these errors in more detail in an appendix (section 3.A).

Based on the problems identified with using delta functions, a better choice for

the conditionals is something spatially extended, such as:

p(x | i) ∝ exp

[
− 1

2s2
d(x,xi)

]
, (3.9)

where s sets the geometric scale or units of distance, and d is a distance metric,

such as the Euclidean distance d(x,xi) = ‖x− xi‖2. If we indeed use the Euclidean

distance, then p(x | i) will be (symmetric) gaussian (with variance s2), and this

corresponds to gaussian smoothing our data. In any case, the obvious choice for

the marginal is p(i) = 1
N
, where N is the number of data points, unless one has a

reason a priori to favor certain data points over others. These choices for p(i) and

p(x | i) determine completely our dataset p(i,x) = p(x | i) p(i). Figure 3.1 contains
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Figure 3.1: Illustration of data smoothing procedure. Example dataset with one
symmetric and one skew cluster. Top row : scatterplot of data points with smoothed
probability distribution overlaid. Bottom row : heat map of the joint distribution
P (i,x) that is fed into DIB. The two spatial dimensions in the top row are binned
and concatenated into a single dimension (on the horizontal axis) in the bottom row,
which is the source of the “striations.”

an illustration of this data smoothing procedure. We will explore the effect of the

choice of smoothing scale s throughout this paper.

With the above choices, we have a fully specified DIB formulation of a geometric

clustering problem. Using our above notational choices, the equations for the nth step

in the iterative DIB solution is (Strouse and Schwab 2017):

c∗(n)(i) = argmax
c

log q(n−1)(c)− βdn(i, c) (3.10)

dn(i, c) ≡ KL
[
p(x | i) | q(n)(x | c)

]
(3.11)

q(n)(c | i) = δ
(
c− c∗(n)(i)

)
(3.12)

q(n)(c) =
n
(n)
c

N
(3.13)

q(n)(x | c) =
∑
i

q(n)(i | c) p(x | i) =
1

n
(n)
c

∑
i:c∗(n)(i)=c

p(x | i) , (3.14)
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where n(n)
c the number of data points assigned to cluster c at step n, n(n)

c ≡

Nq(n)(c) =
∑

i q
(n)(c | i) =

∣∣i : c∗(n)(i) = c
∣∣.

Note that this solution contains β as a free parameter. As discussed above, it

allows us to set our preference between solutions with fewer clusters and those that

retain more spatial information. It is common in the IB literature to run the algorithm

for multiple values of β and to plot the collection of solutions in the “information plane”

with the relevance term I(Y ;T ) on the y-axis and the compression term I(X;T ) on

the x-axis (Palmer et al. 2015, Creutzig et al. 2009, Chechik et al. 2005, Slonim et al.

2005, Still and Bialek 2004, Tishby and Zaslavsky 2015, Rubin et al. 2016, Strouse

and Schwab 2017, Ravid and Tishby 2017). The natural such plane for the DIB is

with the relevance term I(Y ;T ) on the y-axis and its compression term H(T ) on

the x-axis (Strouse and Schwab 2017). The curve drawn out by (D)IB solutions in

the information plane can be viewed as a Pareto-optimal boundary of how much

relevant information can be extracted about Y given a fixed amount of information

about X (IB) or representational capacity by T (DIB) (Strouse and Schwab 2017).

Solutions lying below this curve are of course suboptimal, but a priori, the (D)IB

formalism doesn’t tell us how to select a single solution from the family of solutions

lying on the (D)IB boundary. Intuitively however, when faced with a boundary of

Pareto-optimality, if we must pick one solution, its best to choose one at the “knee”

of the curve. Quantitatively, the “knee” of the curve is the point where the curve

has its maximum magnitude second derivative. In the most extreme case, the second

derivative is infinite when there is a “kink” in the curve, and thus the largest kinks

might correspond to solutions of particular interest. In our case, since the slope of

the (D)IB curve at any given solution is β−1 (which can be read off from the cost

functionals), kinks indicate solutions that are valid over a wide range of β. So large

kinks also correspond to robust solutions, in the sense that they optimize a wide range

of (D)IB tradeoffs. Quantitatively, we can measure the size of a kink by the angle θ of
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the discontinuity it causes in the slope of the curve; see figure 3.2 for details. We will

show in the next section that searches for solutions with large θ result in recovering the

generative cluster labels for geometric data, including the correct number of clusters.

Note that this model selection procedure would not be possible if we had chosen to

use IB instead of DIB. IB uses all the clusters available to it, regardless of the choice

of β. Thus, all solutions on the curve would have the same number of clusters anyway,

so any knees or kinks cannot be used to select the number of clusters.
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Figure 3.2: “Kinks” in DIB information curve as model selection. βmin and
βmax are the smallest and largest β at which the solution at the kink is valid. Thus,
β−1min and β−1max are the slopes of upper and lower dotted lines. The “kink angle” is then
θ = π

2
− arctan(βmin)− arctan(β−1max). It is a measure of how robust a solution is to

the choice of β; thus high values of θ indicate solutions of particular interest.

3.3 Results: geometric clustering with DIB

We ran the DIB as described above on four geometric clustering datasets, varying

the smoothing width s (see eqn 3.9) and tradeoff parameter β, and measured for

each solution the fraction of spatial information extracted Ĩ(c;x) = I(c;x)
I(i;x)

1 and the

number of clusters used nc , as well as the kink angle θ. We iterated the DIB equations

above just as in Strouse and Schwab (2017) with one difference. Iterating greedily

1Note that I(i;x) is an upper bound on I(c;x) due to the data processing inequality,(?) so Ĩ(c;x)
is indeed the fraction of potential geometric information extracted from the smoothed P (i,x).
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from some initialization can lead to local minima (the DIB optimization problem is

non-convex). To help overcome suboptimal solutions, upon convergence, we checked

whether merging any two clusters would improve the value L of the cost functional in

eqn 3.2. If so, we chose the merging with the highest such reduction, and began the

iterative equations again. We repeated this procedure until the algorithm converged

and no merging reduced the value of L. We found that these “non-local” steps worked

well in combination with the greedy “local” improvements of the DIB iterative equations.

While not essential to the function of DIB, this improvement in performance produced

cleaner information curves with less “noise” caused by convergence to local minima.

Similar to (Strouse and Schwab 2017), the automated search over β began with an

initial set of values, and then iteratively inserted more values where there were large

jumps in H(c), I(c;x), or the number of clusters used, or where the largest value of β

did not lead to a clustering solution capturing nearly all of the available geometric

information (that is, with I(c;x) ≈ I(i;x). For more details, see our code repository

at https://github.com/djstrouse/information-bottleneck.

Results are shown in figure 3.3. Each large row represents a different dataset. The

left column shows fractional spatial information Ĩ(c;x) versus number of clusters used

nc, stacked by smoothing width s.2 The center column shows the kink angle θ for each

cluster number nc, again stacked by smoothing width s. Finally, the right column

shows example solutions.

In general, note that as we increase β, we move right along the plots in the left

column, that is towards higher number of clusters nc and more spatial information

Ĩ(c;x). Not all values of nc are present because while varying the implicit parameter

β, DIB will not necessarily “choose” to use all possible cluster numbers. For example,

for small smoothing width s, most points won’t have enough overlap in p(x | i) with

their neighbors to support solutions with few clusters, and for large smoothing width
2Note that this is not the same as the information plane curve from figure 3.2. While the y-axes

are the same (up to the normalization), the x-axes are different.
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Figure 3.3: Results: model selection and clustering with DIB. Results for four
datasets. Each row represents a different dataset. Left column: fraction of spatial
information extracted, Ĩ(c;x) = I(c;x)

I(i;x)
, versus number of clusters used, nc, across a

variety of smoothing scales, s. Center column: kink angle θ (of the I(c;x) vs H(c)
curve) versus number of clusters used, nc, across a variety of smoothing scales, s.
Right column: example resulting clusters.
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s, local spatial information is thrown out and only solutions with few clusters are

possible. More interestingly, DIB may retain or drop solutions based on how well they

match the structure of the data, as we will discuss for each dataset below. Additionally,

solutions that match well the structure in the data (for example, ones with nc matched

to the generative parameters) tend to be especially robust to β, that is they have a

large kink angle θ. Thus, θ can be used to perform model selection. For datasets with

structure at multiple scales, the kink angle θ will select different solutions for different

values of the smoothing width s. This allows us to investigate structure in a dataset

at a particular scale of our choosing. We now turn to the individual datasets.

The first dataset (top large row) consists of 3 equally spaced, equally sampled

symmetric gaussian clusters (see solutions in right column). We see that the 3-cluster

solution stands out in several ways. First, it is robust to spatial scale s. Second,

the 3-cluster solution extract nearly all of the available spatial information; solutions

with nc ≥ 4 extract little extra Ĩ(c;x). Third and perhaps most salient, the 3-cluster

solution has by far the largest value of kink angle θ across a wide range of smoothing

scales. In the right column, we show examples of 3 and 4-cluster solutions. Note that

while all 3-cluster solutions look exactly like this one, the 4-cluster solutions vary in

how they chop one true cluster into two.

The second dataset (second row) consists of 3 more equally sampled symmetric

gaussian clusters, but this time not equally spaced; two are much closer to one another

than the third. This is a dataset with multiple scales present, thus we should expect

that the number of clusters picked out by any model selection procedure, e.g. kink

angle, should depend on the spatial scale of interest. Indeed, we see that to be true.

The 3-cluster solution is present for all smoothing widths shown, but is only selected

out as the best solution by kink angle for intermediate smoothing widths (s = 2). For

large smoothing widths (s = 8), we see that the 2-cluster solution is chosen as best.

For smoothing widths in between (s = 4), the 2 and 3-cluster solutions are roughly
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equally valid. In terms of spatial information, the 2 and 3-cluster solutions are also

prominent, with both transitions from nc = 1→ 2 and nc = 2→ 3 providing significant

improvement in Ĩ(c;x) (but little improvement for more fine-grained clusterings).

The third dataset (third row) features even more multi-scale structure, with 5

symmetric, equally sampled gaussians, again with unequal spacing. Sensible solutions

exist for nc = 2− 5, and this can be seen by the more gradual rise of the fractional

spatial information Ĩ(c;x) with nc in that regime. We also again see a transition in the

model selection by θ from the 5-cluster solution at small smoothing widths (s = 1, 2)

and the 2-cluster solution at larger smoothing widths (s = 8), with intermediate nc

favoring those and intermediate solutions. Example clusters for nc = 2− 5 are shown

at right.

Finally, we wanted to ensure that DIB and our model selection procedure would

not halluscinate structure where there is none, so we applied it to a single gaussian

blob, with the hope that no solution with nc > 1 would stand out and prove robust to

β. As can be seen in the fourth row of figure 3.3, that is indeed true. No solution at

any smoothing width had particuarly high kink angle θ, and no solution remained at

the “knee” of the Ĩ(c;x) versus nc curve across a wide range of smoothing widths.

Overall, these results suggest that DIB on smoothed data is able to recover

generative geometric structure at multiple scales, using built-in model selection

procedures based on identifying robust, spatially informative solutions.

3.4 Results: DIB vs GMMs & k-means

Here we show that in the limit of infinite data and small smoothing scale s,

the behavior of (D)IB is intimately related to the hard cluster boundaries implied

by GMMs. We assume we have one gaussian cluster centered at µ1 = (0, 0) with

covariance Σ1 = diag(σ1, σ2), and a second gaussian cluster centered at µ2 = (L, 0)
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with covariance Σ2 = diag(σ, σ). If we have a mixture model with weights w1 and

w2, then the hard maximum likelihood boundary between these two clusters in the

(x1, x2) plane is given by:

T1 ≡
x21
2σ2

1

+
x22
2σ2

2

+ log σ1σ2

T2 ≡
1

2σ2

(
x21 + x22 + L2 − 2Lx1

)
logw1 − T1 = logw2 − T2.

On the other hand, the (D)IB algorithm would classify a new test point at location

(x1, x2) gaussian smoothed by s based on the KL divergence between its smoothed

distribution and the two cluster gaussians:

KL1 = s2
(
σ2
1 + σ2

2

2σ2
1σ

2
2

)
+

x21
2σ2

1

+
x22
2σ2

2

− k

2
+ log

σ1σ2
s2

(3.15)

KL2 =
s2

σ2
+

1

2σ2

(
(x1 − L)2 + x22

)
− k

2
+ log

σ2

s2
, (3.16)

where k = 2 is the number of dimensions. The boundary implied by DIB is found

by setting:

logw1 − βKL1 = logw2 − βKL2. (3.17)

Notice that for small smoothing width s→ 0 and either β = 1 or evenly sampled

clusters w1 = w2, this is identical to the hard boundary implied by the GMM. For

β > 1, w1 6= w2, and small smoothing width, we see that, compared with a GMM,

DIB encourages capturing more information about spatial location at the expense

of using clusters more equally. Put another way, the effect of the cluster prior term

log w1

w2
is reduced by pulling it closer to zero, i.e. replacing it with log

(
w1

w2

)1/β
. This
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provides an interesting information theoretic interpretation of GMMs and also shows

the manner in which clustering with DIB is a generalization.

To see the effect of larger smoothing widths, we compared the numerically calculated

DIB, GMM, and k-means cluster boundaries for the “true” assignments with nc = 2

over a range of smoothing widths (see figure 3.4). The data consisted of 1000 points

sampled equally (w1 = w2) from one isotropic and one skew gaussian as shown. We

can see that for small smoothing widths, the DIB boundary indeed approaches that

of the GMM. For larger smoothing widths, the effect of the “shape” of the clusters

is muted and the DIB boundary approaches k-means. Note that this is just one

particular example however and DIB need not approach k-means in the large s limit

in general.
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Figure 3.4: Cluster boundaries for different algorithms. Colored lines show
boundaries separating two clusters for 3 different algorithms: k-means, GMMs, and
DIB with 3 different levels of smoothing. Dataset was 1000 points drawn equally from
a single symmetric gaussian and a single skew gaussian. Black points show data.

3.5 Discussion

Here, we have shown how to use the formalism of the information bottleneck to

perform geometric clustering. A previous paper (Still et al. 2003) claimed to contribute

similarly, however for the reasons discussed in sections 3.2 and 3.A, their approach

contained fundamental flaws. We amend and improve upon that paper in four ways.
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First, we show to fix the errors they made in their problem setup (with the data

preparation). Second, we argue for using DIB over IB in this setting for its preference

for using as few clusters as it can. Third, we introduce a novel form of model selection

for the number of clusters based on discontinuities (or “kinks”) in the slope of the DIB

curve, which indicate solutions that are robust across the DIB tradeoff parameter β.

We show that this information-based model selection criterion allows us to correctly

recover generative structure in the data at multiple spatial scales. Finally, we compare

the resulting clustering algorithm to k-means and gaussian mixture models (GMMs).

We found that for large smoothing width, s, the performance of the method seems to

behave similarly to k-means. More interestingly, we found that for small smoothing

width, the method behaves as a generalization of a GMM, with a tunable tradeoff

between compression and fidelity of the representation.

We have introduced one way of doing geometric clustering with the information

bottleneck, but we think it opens avenues for other ways as well. First, the uniform

smoothing we perform above could be generalized in a number of ways to better

exploit local geometry and better estimate the “true” generative distribution of the

data. For example, one could do gaussian smoothing with mean centered on each

data point but the covariance estimated by the sample covariance of neighboring data

points around that mean. Indeed, our early experiments with this alternative suggest

it may be useful for certain datasets. Second, while choosing spatial location as the

relevant variable for DIB to preserve information about seems to be the obvious first

choice to investigate, other options might prove interesting. For example, preserving

information about the identity of neighbors, if carefully formulated, might make fewer

implicit assumptions about the shape of the generative distribution, and enable the

extension of our approach to a wider range of datasets.

Scaling the approach introduced here to higher-dimensional datasets is non-trivial

because the tabular representation used in the original IB (?)and DIB (?) algorithms
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leads to an exponential scaling with the number of dimensions. Recently, however,

three groups simultaneously introduced a variational version of IB (Alemi et al.

2016, Chalk et al. 2016, Achille and Soatto 2016), in which one parameterizes the

encoder q(t | x) (and “decoder” q(y | t)) with a function approximator, e.g. a deep

neural network. This has the advantage of allowing scaling to much larger datasets.

Moreover, the choice of parameterization often implies a smoothness constraint on

the data, relieving the problem encountered above of needing to smooth the data. It

would be interesting to develop a variational version of DIB, which could then be

used to perform information-theoretic clustering as we have done here, but on larger

problems and perhaps with no need for data smoothing.
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Appendix

3.A Errors in (Still et al. 2003)

A previous attempt was made to draw a connection between IB and k-means (Still

et al. 2003). Even before reviewing the algebraic errors that lead their result to break

down, there are two intuitive reasons why such a claim is unlikely to be true. First,

IB is a soft clustering algorithm, and k-means is a hard clustering algorithm. Second,

the authors made the choice not to smooth the data and to set p(x | i) = δxxi
. As

discussed in section 3.2, (D)IB clusters data points based on these conditionals, and

delta functions trivially only overlap when they are identical.

The primary algebraic mistake appears just after eqn 14, in the claim that

pn(x | c) ∝ pn−1(x | c)1/λ. Combining the previous two claims in that proof, we

obtain:

pn(x | c) =
1

N

∑
i

δxxi

Zn(i, λ)
pn−1(xi | c)1/λ . (3.18)

Certainly, this does not imply that pn(x | c) ∝ pn−1(x | c)1/λ everywhere, because

of the δxxi
factor which picks out only a finite number of points.

One might wonder why with these mistakes, the authors still obtain an algorithm

that looks and performs like k-means. The reason is because their sequence of mistakes

leads to the result in eqn 15 that effectively assumes that IB has access to geometric
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information it should not, namely the cluster centers at step n. Since these are exactly

what k-means uses to assign points to clusters, it is not surprising that the behavior

then resembles k-means.
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Chapter 4

Learning to share and hide intentions

using information regularization

In the last two chapters, we discussed the application of information-theoretic tools

to feature selection and clustering. Even though these were not the original intended

applications of information theory, they nonetheless led to interesting solutions. In

the present chapter, we turn to applying information theory to problems more similar

to its original intended application - communication.

Here, we consider a setting in which multiple agents with asymmetric information

seek to accomplish some goal. In acting to carry out their goals, they may convey

some of the information they hold privately to other agents. If the other agent is a

friend, this is a good thing, and should be encouraged. However, if the other agent is

an enemy, this is a bad thing, and should be discouraged. In either case, one might

want to explicitly include the information conveyed to other agents in the training

objective. In what follows, we develop the technical tools to do so, and then show

experimentally that they lead to effective cooperative / competitive strategies.

This chapter is under review as Strouse et al. (2018).
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Abstract

Learning to cooperate with friends and compete with foes is a key component

of multi-agent reinforcement learning. Typically to do so, one requires access

to either a model of or interaction with the other agent(s). Here we show how

to learn effective strategies for cooperation and competition in an asymmetric

information game with no such model or interaction. Our approach is to

encourage an agent to reveal or hide their intentions using an information-

theoretic regularizer. We consider both the mutual information between goal

and action given state, as well as the mutual information between goal and state.

We show how to stochastically optimize these regularizers in a way that is easy

to integrate with policy gradient reinforcement learning. Finally, we demonstrate

that cooperative (competitive) policies learned with our approach lead to more

(less) reward for a second agent in two simple asymmetric information games.

4.1 Introduction

In order to effectively interact with others, an intelligent agent must understand the

intentions of others. In order to successfully cooperate, collaborative agents that share

their intentions will do a better job of coordinating their plans together (Tomasello

et al. 2005). This is especially salient when information pertinent to a goal is known

asymmetrically between agents. When competing with others, a sophisticated agent

might aim to hide this information from its adversary in order to deceive or surprise

them. This type of sophisticated planning is thought to be a distinctive aspect of

human intelligence compared to other animal species (Tomasello et al. 2005).

Furthermore, agents that share their intentions might have behavior that is more

interpretable and understandable by people. Many reinforcement learning (RL)

systems often plan in ways that can seem opaque to an observer. In particular, when

an agent’s reward function is not aligned with the designer’s goal the intended behavior
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often deviates from what is expected (Hadfield-Menell et al. 2016). If these agents are

also trained to share high-level and often abstract information about its behavior (i.e.

intentions) it is more likely a human operator or collaborator can understand, predict,

and explain that agents decision. This is key requirement for building machines that

people can trust.

Previous approaches have tackled aspects of this problem but all share a similar

structure (Dragan et al. 2013, Ho et al. 2016, Hadfield-Menell et al. 2016, Shafto et al.

2014). They optimize their behavior against a known model of an observer which

has a theory-of-mind (Baker et al. 2009, Ullman et al. 2009, Rabinowitz et al. 2018)

or is doing some form of inverse-RL (Ng et al. 2000, Abbeel and Ng 2004). In this

work we take an alternative approach based on an information theoretic formulation

of the problem of sharing and hiding intentions. This approach does not require an

explicit model of or interaction with the other agent, which could be especially useful

in settings whether interactive training is expensive or dangerous. Our approach also

naturally composes with scalable policy-gradient methods commonly used in deep

reinforcement learning.

4.2 Hiding and revealing intentions via information-

theoretic regularization

We consider multi-goal environments in the form of a discrete-time finite-horizon dis-

counted Markov decision process (MDP) defined by the tupleM≡ (S,A,G, P, ρG, r, ρS, γR, T ),

where S is a state set, A an action set, P : S × A × S → R+ a (goal-independent)

probability distribution over transitions, G a goal set, ρG : G → R+ a distribution

over goals, r : S × G → R a (goal-dependent) reward function, ρS : S → R+ a

probability distribution over initial states, γR ∈ [0, 1] a (reward) discount factor, and

T the horizon.
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In each episode, a goal is sampled and determines the reward structure for that

episode. One agent, Alice, will have access to this goal and thus knowledge of the

environment’s reward structure, while a second agent, Bob, will not and instead must

infer it from observing Alice. We assume that Alice knows in advance whether Bob is

a friend or foe and wants to make his task easier or harder, respectively, but that she

has no model of him and must train without any interaction with him.

Of course, Alice also wishes to maximize her own expected reward η[π] = Eτ
[∑T

t=0 γ
t
Rr(st, g)

]
,

where τ = (g, s0, a0, s1, a1, . . . , sT ) denotes the episode trajectory, g ∼ ρG, s0 ∼ ρS,

at ∼ πg(at | st), and st+1 ∼ P (st+1 | st, at), and πg(a | s; θ) : G×S×A → R+ is Alice’s

goal-dependent probability distribution over actions (policy) parameterized by θ.

It is common in RL to consider loss functions of the form J [π] = η[π] + β`[π],

where ` is a regularizer meant to help guide the agent toward desirable solutions. For

example, the policy entropy is a common choice to encourage exploration (Mnih et al.

2016), while pixel prediction and control have been proposed to encourage exploration

in visually rich environments with sparse rewards (Jaderberg et al. 2016).

Below, we will consider two different information regularizers meant to encour-

age/discourage Alice from sharing goal information with Bob: the (conditional) mutual

information between goal and action given state, Iaction[π] ≡ I(A;G | S), which we

will call the "action information", and the mutual information between state and

goal, Istate[π] ≡ I(S;G), which we will call the "state information." Since the mutual

information is a general measure of dependence (linear and non-linear) between two

variables, Iaction and Istate measure the ease in inferring the goal from the actions and

states, respectively, generated by the policy π. Thus, if Alice wants Bob to do well,

she should choose a policy with high information, and vice versa if not.

We consider both action and state informations because they have different

advantages and disadvantages. Using action information assumes that Bob (the

observer) can see both Alice’s states and actions, which may be unrealistic in some
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environments, such as one in which the actions are the torques a robot applies to its

joint angles (Eysenbach et al. 2018). Using state information relaxes the assumption to

that Bob only can observe Alice’s states, however it does so at the cost of requiring Alice

to count goal-dependent state frequencies under the current policy. Optimizing action

information, on the other hand, does not require state counting. So, in summary, action

information is simpler to optimize, but state information may be more appropriate to

use in a setting where an observer can’t observe (or infer) the observee’s actions.

The generality with which mutual information measures dependence is at once its

biggest strength and weakness. On the one hand, using information allows Alice to

prepare for interaction with Bob with neither a model of nor interaction with him.

On the other hand, Bob might have limited computational resources (for example,

perhaps his policy is linear with respect to his observations of Alice) and so he may

not be able to “decode” all of the goal information that Alice makes available to

him. Nevertheless, Iaction and Istate can at least be considered upper bounds on Bob’s

inference performance; if Iaction = 0 or Istate = 0, it would be impossible for Bob to

guess the goal (above chance) from Alice’s actions or actions, respectively, alone.

4.2.1 Optimizing action information: Iaction ≡ I(A;G | S)

First, we discuss regularization via optimizing the mutual information between

goal and action (conditioned on state), Iaction ≡ I(A;G | S), where G is the goal for

the episode, A is the chosen action, and S is the state of the agent. That is, we

will train an agent to maximize the objective Jaction[π] ≡ E[r] + βIaction, where β is

a tradeoff parameters whose sign determines whether we want the agent to signal

(positive) or hide (negative) their intentions, and whose magnitude determines the

relative preference for rewards and intention signaling/hiding.
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Iaction is a functional of the multi-goal policy πg(a | s) ≡ p(a | s, g), that is the

probability distribution over actions given the current goal and state, and is given by:

Iaction ≡ I(A;G | S) =
∑
s

p(s) I(A;G | S = s) (4.1)

=
∑
g

ρG(g)
∑
s

p(s | g)
∑
a

πg(a | s) log
πg(a | s)
p(a | s) . (4.2)

The quantity involving the sum over actions is a KL divergence between two

distributions: the goal-dependent policy πg(a | s) and a goal-independent policy

p(a | s). This goal-independent policy comes from marginalizing out the goal, that

is p(a | s) =
∑

g ρG(g) πg(a | s), and can be thought of as a fictitious policy that

represents the agent’s “habit” in the absence of knowing the goal. We will denote

π0(a | s) ≡ p(a | s) and refer to it as the “base policy,” whereas we will refer to πg(a | s)

as simply the “policy.” Thus, we can rewrite the information above as:

Iaction =
∑
g

ρG(g)
∑
s

p(s | g)KL[πg(a | s) | π0(a | s)] (4.3)

= Eτ [KL[πg(a | s) | π0(a | s)]] . (4.4)

Writing the information this way suggests a method for stochastically estimating

it. First, we sample a goal g from p(g), that is we initialize an episode of some task.

Next, we sample states s from p(s | g), that is we generate state trajectories using our

policy πg(a | s). At each step, we measure the KL between the policy and the base

policy. Averaging this quantity over episodes and steps give us our estimate of Iaction.

Optimizing Iaction with respect to the policy parameters θ is a bit trickier, however,

because the expectation above is with respect to a distribution that depends on θ.
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Thus, the gradient of Iaction with respect to θ has two terms:

∇θIaction =
∑
g

ρG(g)
∑
s

(∇θp(s | g))KL[πg(a | s) | π0(a | s)] (4.5)

+
∑
g

ρG(g)
∑
s

p(s | g)∇θKL[πg(a | s) | π0(a | s)] . (4.6)

The second term involves the same sum over goals and states as in equation 4.3, so

it can be written as an expectation over trajectories, Eτ [∇θKL[πg(a | s) | π0(a | s)]],

and therefore is straightforward to estimate from samples. The first term is more

cumbersome, however, since it requires us to model (the policy dependence of) the

goal-dependent state probabilities, which in principle involves knowing the dynamics

of the environment. Perhaps surprisingly, however, the gradient can still be estimated

purely from sampled trajectories, by employing the so-called “log derivative” trick to

rewrite the term as an expectation over trajectories. The calculation is similar to the

proof of the policy gradient theorem (Sutton et al. 1999) and details can be found in

the supplemental information.

The resulting Monte Carlo policy gradient (MCPG) update is:

∇θJaction(t) =Aaction(t)∇θ log πg(at | st) + β∇θKL[πg(a | st) | π0(a | st)] , (4.7)

where Aaction(t) ≡ Rt + βRaction(t) − Vg(st) is the advantage, Rt =
∑T

τ=t γ
τ−t
R rt is

the discounted reward return, Vg(st) is a goal-state value function regressed toward

Rt + βRaction(t), and we have introduced an “action information return”:

Raction(t) ≡
min(t+n,T )∑
u=t+1

γu−tI KL[πg(a | su) | π0(a | su)] , (4.8)

where γI is an information discount factor (leading to exponential discounting) and n

is the maximum number of terms to include in the info return (leading to Heaviside
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Algorithm 4.1 Action information regularized REINFORCE with value baseline.
Input: β, n, ρG, γI , γR, and ability to sample MDPM
Initialize π, parameterized by θ
Initialize V , parameterized by φ
for i = 1 to Nepisodes do
Generate trajectory τ = (g, s0, a0, s1, a1, . . . , sT )
for t = 0 to T − 1 do

Marginalize to obtain base policy: π0(a | st) =
∑

g ρG(g) πg(a | st)
Calculate reward return: Rt =

∑T
τ=t γ

τ−t
R rt

Calculate action information return Raction(t) using equation 4.8
Update policy in direction of ∇θJaction(t) using equation 4.7
Update value function in direction of −∇φ ‖Vg(st)− (Rt + βRaction(t))‖2

end for
end for

discounting).1 Thus, the agent optimizes a pseudo-reward, which is a weighted sum of

the usual (reward) return and the info return. The gradient update above seeks to

maximize this pseudo-reward, along with the KL divergence between the policy and

base policy in the present state. This algorithm is summarized in algorithm 4.1.

4.2.2 Optimizing state information: Istate ≡ I(S;G)

We now consider how to regularize an agent by the information one’s states give

away about the goal, using the mutual information between state goal, Istate ≡ I(S;G).

This can be written:

Istate =
∑
g

ρG(g)
∑
s

p(s | g) log
p(s | g)

p(s)
= Eτ

[
log

p(s | g)

p(s)

]
. (4.9)

In order to estimate this quantity, we could track and plug into the above equation

the empirical state frequencies pemp(s | g) ≡ Ng(s)

Ng
and pemp(s) ≡ N(s)

N
, where Ng(s) is

the number of times state s was visited during episodes with goal g, Ng ≡
∑

sNg(s)

is the total number of steps taken under goal g, N(s) ≡∑gNg(s) is the number of

1n enters into the calculation as the approximation depth for p(s | g). The introduction of γI is
typically done by defining p(s) and p(s | g) to be themselves discounted. (?)
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times state s was visited across all goals, and N ≡∑g,sNg(s) =
∑

gNg =
∑

sN(s) is

the total number of state visits across all goals and states. Thus, keeping a moving

average of log pemp(st|g)
pemp(st)

across episodes and steps yields an estimate of Istate.

However, we are of course interested in optimizing Istate and so, as in the last

section, we need to employ a slightly more sophisticated estimate procedure. Taking

the gradient of Istate with respect to the policy parameters θ, we get:

∇θIstate =
∑
g

ρG(g)
∑
s

(∇θp(s | g)) log
p(s | g)

p(s)
(4.10)

+
∑
g

ρG(g)
∑
s

p(s | g)

(∇θp(s | g)

p(s | g)
− ∇θp(s)

p(s)

)
. (4.11)

The calculation is similar to that for evaluating ∇θIstate and details can again be

found in the supplemental information. The resulting MCPG update is:

∇θJstate(t) =Astate(t)∇θ log πg(at | st) (4.12)

− β
∑
g′ 6=g

ρG

(
g
′
)
Rcf

(
t, g

′
)
∇θ log πg′ (at | st) , (4.13)

where Astate(t) ≡ Rt + βRstate(t)− Vg(st) is the advantage, Vg(st) is a goal-state

value function regressed toward Rt + βRstate(t), and we have introduced the “state

information return” and “counterfactual goal return”:

Rstate(t) ≡
min(t+n,T )∑
u=t+1

γu−tI

(
1− pemp(g | st) + log

pemp(su | g)

pemp(su)

)
(4.14)

Rcf

(
t, g

′
)
≡

min(t+n,T )∑
v=t+1

γu−tI

pemp
(
sv−n | g′

)
pemp(sv−n | g)

n∏
u=1

πg′ (av−u | sv−u)
πg(av−u | sv−u)

pemp(sv | g)

pemp(sv)
, (4.15)

as well as pemp(g | st) ≡ ρG(g) pemp(st|g)
pemp(st)

. The first term in equation 4.12 encourages

the present action to be more likely to the extent that it leads to a future trajectory

over states unique to the present goal. The second term discourages the present action
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Algorithm 4.2 State information regularized REINFORCE with value baseline.
Input: β, n, ρG, γI , γR, and ability to sample MDPM
Initialize π, parameterized by θ
Initialize V , parameterized by φ
Initialize the state counts Ng(s)
for i = 1 to Nepisodes do
Generate trajectory τ = (g, s0, a0, s1, a1, . . . , sT )
Update Ng(s) (and therefore pemp(s | g)) according to τ
for t = 0 to T − 1 do
Calculate reward return: Rt =

∑T
τ=t γ

τ−t
R rt

Calculate state information return Rstate(t) using equation 4.14
Calculate counterfactual goal return Rcf

(
t, g

′) using equation 4.15
Update policy in direction of ∇θJstate(t) using equation 4.12
Update value function in direction of: −∇φ ‖Vg(st)− (Rt + βRstate(t))‖2

end for
end for

under other goals, again to the extent that the present action leads to states unique

to the present goal. The second term also includes an importance sample weight over

trajectories, since we are considering the probability of a trajectory generated under

the present goal, but evaluating it relative to another goal.

4.3 Related work

Whye Teh et al. (2017) recently proposed an algorithm similar to our action

information regularized approach (algorithm 4.1), but with very different motivations.

They argued that constraining goal-specific policies to be close to a distilled base

policy promotes transfer by sharing knowledge across goals. Due to this difference

in motivation, they only explored the β < 0 regime (i.e. our “competitive” regime).

They also did not derive their update from an information-theoretic cost function, but

instead proposed the update directly. Because of this, their approach differs in that it

did not include the β∇θKL[πg | π0] term, and instead only included the modified return.

Moreover, they did not calculate the full KLs in the modified return, but instead

estimated them from single samples (e.g. KL[πg(a | st) | π0(a | st)] ≈ log πg(at|st)
π0(at|st)).
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Nevertheless, the similarity in our approaches suggest a link between transfer and

competitive strategies, although we do not explore this here.

Eysenbach et al. (2018) also recently proposed an algorithm similar to ours, which

used both Istate and Iaction but with the “goal” replaced by a randomly sampled “skill”

label in an unsupervised setting (i.e. no reward). Their motivation was to learn a

diversity of skills that would later would be useful for a supervised (i.e. reward-yielding)

task. Their approach to optimizing Istate differs from ours in that it uses a discriminator,

a powerful approach but one that, in our setting, would imply a more specific model

of the observer which we wanted to avoid.

Dragan et al. (2013) considered training agents to reveal their goals (in the setting

of a robot grasping task), but did so by building an explicit model of the observer.

Ho et al. (2016) uses a similar model to capture human generated actions that “show”

a goal also using an explicit model of the observer. There is also a long history of

work on training RL agents to cooperate and compete through interactive training

and a joint reward (e.g. (Littman 1994, 2001, Kleiman-Weiner et al. 2016, Leibo et al.

2017)). Our approach differs in that it enables us to train an agent to cooperate or

compete without needing to interact with or model the other agent(s).

4.4 Experiments

We demonstrate the effectiveness of our approach in two stages. First, we show

that training Alice (who has access to the goal of the episode) with information

regularization effectively encourages both goal signaling and hiding, depending on

the sign of the coefficient β. Second, we show that Alice’s goal signaling and hiding

translate to higher and lower rates of reward acquisition for Bob (who does not

have access to the goal and must infer it from observing Alice), respectively. We

demonstrate these results in two different simple settings.
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Figure 4.1: Information-regularized policies. Top row: regularization with Iaction.
Bottom row: regularization with Istate. Left column: β = .025. Center column: β = 0.
Right column: β = .025. See main text for additional details.

4.4.1 Spatial navigation

The first setting we consider is a simple grid world spatial navigation task, where we

can fully visualize and understand Alice’s regularized policies. The 5× 5 environment

contains two possible goals: the top left state or the top right. On any given episode,

one goal is chosen randomly (so ρG is uniform) and that goal state is worth +1 reward.

The other goal state is then worth −1. Both are terminal. Each of Alice and Bob spawn

in a random (non-terminal) state and take actions in A = {left, right, up, down, stay}.

A step into a wall is equivalent to the stay action but results in a penalty of −.1

reward. We first train Alice alone, and then freeze her parameters and introduce Bob.

Alice was trained using implementations of algorithms 4.1 and 4.2 in TensorFlow

(?). Given the small, discrete environment, we used tabular representations for both

π and V . See supplemental information for training parameters.

Examples of Alice’s resulting policies are shown in figure 4.1. The top row contains

policies regularized with Iaction, the bottom with Istate. The left column contains

“cooperative” policies encouraged to share goal information (β = .025), the middle

“ambivalent” policies that are unregularized (β = 0), and the right “competitive”

policies encouraged to hide goal information (β = −.025). In each case, two policies

are shown - at left, the policy when the goal is in the top left, and at right, when it is

in the top right. The arrows are proportional to Alice’s action probabilities. The color

69



scale indicates KL[πg | π0] and log pemp(s|g)
pemp(s)

in bits for action and state information

regularization, respectively. Thus, bluer indicates more goal information shared in

that state.

In the cooperative case with action information regularization, Alice wants to

maximize KL[πg | π0] and thus she wants her goal-dependent policies to differ as much

as possible. This primarily results in her going left in most states when the goal is in

the top left, and right when its in the top right. She can also choose to have some

probability of going up in those states, as long as she only does so under one goal

or the other and not both. Ultimately this means that no matter what state Alice

spawns in, she immediately signals the goal with her very first action, and continues

to do so with each subsequent action.

In the competitive case with action information regularization, Alice instead wants

to minimize KL[πg | π0] and thus she wants her goal-dependent policies to match as

much as possible. In the present case, this means that she chooses to go up as far as

she can until she must pivot in order to still reach the goal in the minimal number

of steps. This leads to her hiding the goal for as long as possible without sacrificing

reward.

Without information regularization, Alice’s policy is a random mixture of the

competitive and cooperative strategies, the details of which are determined by

initialization and the randomness of training trajectories. Regularization with state

information yields similar policies to those generated with action information in all

three cases, since in this deterministic setting, different action choices are tightly

coupled with different state trajectories.

To demonstrate that Alice’s goal revealing and hiding behaviors are useful for

cooperation and competition, respectively, we then trained a second agent, Bob, who

does not have access to the goal and instead must infer it from observing Alice. Thus,

while Alice’s inputs at time t were the present goal g and her state salice
t , Bob’s are
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action regularized state regularized

Figure 4.2: The effect of Alice hiding/sharing goal information on Bob’s
performance. Left column: regularization with Iaction. Right column: regularization
with Istate. Top row: Bob’s episode length relative to Alice’s (moving average over 500
episodes). Bottom row: the percentage of time Alice beats Bob to the goal (moving
average over 1000 episodes).

Alice’s present state and action salice
t and aalice

t , as well as his own state sbob
t . Details

are available in the supplemental information, but in brief, Bob processes Alice’s

state-action trajectories with an RNN to form a belief about the goal, which then

feeds into his policy, all of which is trained end-to-end via REINFORCE.

We trained 5 of each of the 3 versions of Alice above, and 10 Bobs per Alice. We

plot the results for the best performing Bob for each Alice (so 5 × 3 = 15 curves)

in figure 4.2. We use all 5 Alices to estimate the variance in our approach, but the

best-of-10 Bob to provide a reasonable estimate of the best performance of a friend/foe.

We measure Bob’s performance in terms of his episode length, relative to Alice’s,

as well as the percentage of time he beats Alice to the goal. For both action and state

information regularization, encouraging Alice to hide goal information leads to Bob

taking about 30% longer to reach the goal relative to when Alice is encouraged to

share goal information. Information-hiding Alice receives a boost of similar magnitude
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in the frequency with which she beats Bob to the goal. Training without information

regularization leads to results in between the competitive and cooperative strategies,

although closer to the cooperative strategy in this case. We also note that the variance

in Bob’s performance was higher for the unregularized case, and much higher for

the competitive case, with nearly zero variance in performance for the cooperative

case, indicating that information hiding and sharing make training harder and easier,

respectively.

4.4.2 Key-and-door game

In the above spatial navigation task, information regularization of Alice breaks

symmetries between equally-preferred (in terms of reward) navigation strategies.

However, in many scenarios, it might be worthwhile for an agent to give up some reward

if it means large gains in the ability to hide or share information. To demonstrate

that our approach could also discover such “lossy” strategies, we designed a simple

key-and-door game with this feature (figure 4.3, left).

It is again a two-goal (door) game with the same action space and reward structure

as the spatial navigation setting. Alice again alone receives the goal, and Bob must

infer it from observing her. The difference is that, in order to enter the terminal states,

Alice and Bob must first pick up an appropriate key. Each agent has goal-specific

keys that only they can pick up (top/bottom rows, color-coded to door, labeled with

A/B for Alice/Bob). Alice also has access to a master key that can open both doors

(center right). Agents can only pick up one key per episode - the first they encounter.

Bob spawns in the same location every time (the “B”), while Alice spawns in any of

the 3 spaces between her two goal-specific keys (the “A” and spaces above/below).

This means that Bob has a shorter path to the goals, and thus if Alice telegraphs

the goal right away, Bob will beat her to it. While Alice’s master key is strictly on a
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Figure 4.3: Key-and-door game results. Left: depiction of game. Center:
percentage episodes in which Alice picks up goal-specific vs master key during training
in an example run (moving average over 100 episodes). Right: percentage episodes in
which Bob beats/tie Alice to the goal (moving average over 1000 episodes).

longer path to the goal, picking it up allows her to delay informing Bob of the goal

such that she can beat him to it.

We trained Alice with action information regularization as in the previous section

(see supplemental information for training parameters). When unregularized or

encouraged to share goal information (β = .25), Alice simply took the shortest path to

the goal, never picking up the master key. When Bob was trained on these Alices, he

beat/tied her to the goal on approximately 100% of episodes (figure 4.3, right). When

encouraged to hide information (β = −.25), however, we found that Alice learned to

take the longer path via the master key on about half of initializations (example in

figure 4.3, center). When Bob was trained on these Alices, he beat/tied her to the

goal much less than half the time (figure 4.3, right). Thus, our approach successfully

encourages Alice us to forgo rewards during solo training in order to later compete

more effectively in an interactive setting.

4.5 Discussion

In this work, we developed a new framework for building agents that balance

reward-seeking with information-hiding/sharing behavior. We demonstrate that our

approach allows agents to learn effective cooperative and competitive strategies in

asymmetric information games without an explicit model or interaction with the other
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agent(s). Such an approach could be particularly useful in settings where interactive

training with other agents could be dangerous or costly, such as the training of

expensive robots or the deployment of financial trading strategies.

We have here focused on simple environments with discrete and finite states,

goals, and actions, and so we briefly describe how to generalize our approach to more

complex environments. When optimizing Iaction with many or continuous actions, one

could stochastically approximate the action sum in KL[πg | π0] and its gradient (as

in Whye Teh et al. (2017)). Alternatively, one could choose a form for the policy πg

and base policy π0 such that the KL is analytic. For example, it is common for πg

to be Gaussian when actions are continuous. If one also chooses to use a Gaussian

approximation for π0 (forming a variational bound on Iaction), then KL[πg | π0] is closed

form. For optimizing Istate with continuous states, one can no longer count states

exactly, so these counts could be replaced with, for example, a pseudo-count based on

an approximate density model (Ostrovski et al. 2017). Of course, for both types of

information regularization, continuous states or actions also necessitates using function

approximation for the policy representation. Finally, although we have assumed access

to the goal distribution ρG, one could also approximate it from experience.
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Appendix

4.A Calculating ∇θIaction(t)

We seek to evaluate the first term (see main text for discussion of the second term)

in:

∇θIaction =
∑
g

ρG(g)
∑
s

(∇θp(s | g))KL[πg(a | s) | π0(a | s)] (4.16)

+
∑
g

ρG(g)
∑
s

p(s | g)∇θKL[πg(a | s) | π0(a | s)] . (4.17)

Doing so requires us to model (the policy dependence of) the goal-dependent state

probabilities, which in principle involves knowing the dynamics of the environment. The

simplest such “model” we could use are the empirical goal-dependent state frequencies

pemp(s | g) ≡ Ng(s)

Ng
, where Ng(s) is the number of times state s was visited during

episodes with goal g and Ng =
∑

sNg(s) is the total number of steps taken under

goal g. However, if we simply plugged in p̂0(st | g) ≡ pemp(s | g), there is no policy

dependence and so the first term would vanish (since ∇θpemp(s | g) = 0). This yields

what we will call the “zeroth-order” approximation to the gradient in equation 4.16:

∇θI
0
action(t) ≡ ∇θKL[πg(a | st) | π0(a | st)] , (4.18)
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where the superscript 0 refers to the order of the approximation of p(s | g) (i.e.

p̂0(s | g)). A “first-order” approximation, going one step back in time, would be:2

p̂1(st | g) ≡
∑

st−1,at−1

pemp(st−1 | g) πg(at−1 | st−1)P (st | st−1, at−1) (4.19)

The idea here is to model the probability of reaching state st as the probability

of reaching another state st−1, choosing an action at−1 in that state, and then

transitioning into state st, summed over st−1 and at−1. The n-step generalization of

this approximation is then:

p̂n(st | g) ≡
∑
τ(t,n)

pemp(st−u | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) , (4.20)

where τ(t, n) = {st−u, at−u}nu=1 is the set of trajectories of length n going backwards

from time t. That is, we approximate p(st | g) by summing over all paths of length n

ending in state st, considering the probabilities of the originating state, and the action

choices and transitions along the way.

Since the policy-dependence of p̂n is now explicit in equation 4.20, we can take the

derivative with respect to the policy parameters θ:

∇θp̂n(st | g) =
∑
τ(t,n)

pemp(st−n | g)×
u∑
v=1

P (st−v+1 | st−v, at−v)∇θπg(at−v | st−v)

(4.21)

×
n∏

u=1,u6=v

P (st−u+1 | st−u, at−u) πg(at−u | st−u) . (4.22)

To massage this into an expectation over trajectories so that we can estimate from

samples, we will employ the so-called log-derivative trick. That is, we multiply and
2We have added time indices for clarity, but note that st−1 and at−1 are dummy variables that

are summed over, and are not the actual previous states and actions in the present trajectory, but
rather represent all possible previous states and actions.
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divide by the πg(at−v | st−v) to get:

∇θp̂n(st | g) =
∑
τ(t,n)

pemp(st−n | g) (4.23)

×
u∑
v=1

P (st−v+1 | st−v, at−v) πg(at−v | st−v)
∇θπg(at−v | st−v)
πg(at−v | st−v)

(4.24)

×
n∏

u=1,u 6=v

P (st−u+1 | st−u, at−u) πg(at−u | st−u) (4.25)

=
∑
τ(t,n)

pemp(st−n | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) (4.26)

×
n∑
v=1

∇θπg(at−v | st−v)
πg(at−v | st−v)

(4.27)

=
∑
τ(t,n)

pemp(st−n | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) (4.28)

×
n∑
v=1

∇θ log πg(at−v | st−v) . (4.29)

Plugging this back into the first term of equation 4.16, which we denote T n1 (adding

a superscript n to indicate that we have plugged in the n-step approximation):

T n1 =
∑

g,τ(t,n),st

ρG(g) pemp(st−n | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) (4.30)

×KL[πg(a | st) | π0(a | st)]
n∑
v=1

∇θ log πg(at−v | st−v) (4.31)

= Eτ

[
KL[πg(a | st) | π0(a | st)]

n∑
v=1

∇θ log πg(at−v | st−v)
]
, (4.32)

where we have now written this term as an expectation over trajectories and so

can therefore estimate the gradient from samples. For trajectories of length less than

n, the approximation in equation 4.20 would “ground out” at the spawning state.

Therefore, the sum in the expectation should instead be from v = 1 to min(n, t).
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This yields the nth-order gradient estimator:

∇θI
n
action(t) ≡∇θKL[πg(a | st) | π0(a | st)] (4.33)

+ KL[πg(a | st) | π0(a | st)]
min(n,t)∑
u=1

∇θ log πg(at−u | st−u) . (4.34)

While there are many approaches to maximizing expected reward, because the

information is a functional of the policy and we wish to simultaneously optimize

rewards and information, it will be most natural to take a policy gradient approach.

That is, the gradient of our objective (with respect to policy parameters θ) at time

step t in an episode with goal g will given by:

∇θJ
n
action(t) =Rt∇θ log πg(at | st) + β∇θKL[πg(a | st) | π0(a | st)] (4.35)

+ βKL[πg(a | st) | π0(a | st)]
min(n,t)∑
u=1

∇θ log πg(at−u | st−u) . (4.36)

where Rt =
∑T

τ=t γ
τ−t
R rt is the discounted return, T is the length of the episode,

γR the reward discount factor, and rt the reward at time step t. By using the actual

episode return Rt, we are assuming finite episodes and taking an approach known as

the REINFORCE algorithm (?). However, one could replace Rt with an estimated

return such as a learned Q-value Q(st, at).

We can understand this update better if we take the sum over terms going backward

in time and group them with the gradient updates at those times. That yields:

∇θJ
n
action(t) = (Rt + βRaction)∇θ log πg(at | st) + β∇θKL[πg(a | st) | π0(a | st)] ,

(4.37)
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where Rt =
∑T

τ=t γ
τ−t
R rt is the discounted reward return, and we have introduced

an “action information return”:

Rn
action(t) ≡

min(t+n,T )∑
u=t+1

KL[πg(a | su) | π0(a | su)] . (4.38)

Thus, the agent optimizes a pseudo-reward, which is a weighted sum of the usual

(reward) return and the info return. The gradient update above seeks to maximize

this pseudo-reward, along with the KL divergence between the policy and base policy

in the present state.

Of course, the info return could grow unbounded with large n and T , so just as

one includes a discount factor for the reward, one should also include it for the info

return.3 That is, we revise our above definition to:

Rn
action(t) ≡

min(t+n,T )∑
u=t+1

γu−tI KL[πg(a | su) | π0(a | su)] , (4.39)

where γI is the discount for the information return.

In the main text, we drop the n superscripts and include a value function baseline,

yielding:

∇θJaction(t) =Aaction(t)∇θ log πg(at | st) + β∇θKL[πg(a | st) | π0(a | st)] , (4.40)

where Aaction(t) ≡ Rt+βRaction(t)−Vg(st) is the advantage and Vg(st) is a goal-state

value baseline regressed toward Rt + βRaction(t).
3This is typically motivated by defining the state distribution p(s) to include the discount factor,

? but since its introduction is clumsy no matter where you add it, we do so at the end.
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4.B Calculating ∇θIstate(t)

We want to evaluate:

∇θIstate =
∑
g

ρG(g)
∑
s

(∇θp(s | g)) log
p(s | g)

p(s)
(4.41)

+
∑
g

ρG(g)
∑
s

p(s | g)
∇θp(s | g)

p(s | g)
(4.42)

−
∑
g

ρG(g)
∑
s

p(s | g)
∇θp(s)

p(s)
(4.43)

≡T1 + T2 − T3, (4.44)

where we denote the three terms by T1 , T2, and T3 (emphasizing that we are now

overriding the definitions T1 and T2 in the last section). The calculation of T1 procedes

just as for the same term in the previous section, and again results in supplementing

the usual return with an info return, this time over the log state odds:

t+n∑
u=t+1

log
pemp(su | g)

pemp(su)
. (4.45)

By the same argument, T2 =
∑

g p(g)
∑

s∇θp(s | g) simply results in the addition

of 1 to the info return at each time step.

Finally, we have the third term. For ∇θp(s), we can use the same n-step

approximation as in eqn 4.20 and just marginalize out the goal, that is:

∇θp̂n(st) ≡
∑

g,τ(t,n)

ρG(g) pemp(st−n | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) (4.46)

×
n∑
v=1

∇θ log πg(at−v | st−v) . (4.47)
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Plugging this into T3 yields:

T n3 =
∑

g,g′ ,τ(t,n),st

ρG(g) ρG

(
g
′
) pemp(st | g)

pemp(st)
pemp

(
st−n | g

′
)

(4.48)

×
n∏
u=1

πg′ (at−u | st−u)P (st−u+1 | st−u, at−u)
n∑
v=1

∇θ log πg′ (at−v | st−v) . (4.49)

To turn this into an expectation over trajectories, we multiply and divide by

pemp(st−n | g) and
∏n

u=1 πg(at−u | st−u):

T n3 =
∑

g,τ(t,n),st

ρG(g) pemp(st−n | g)
n∏
u=1

πg(at−u | st−u)P (st−u+1 | st−u, at−u) (4.50)

×
∑
g′

ρG

(
g
′
) pemp

(
st−n | g′

)
pemp(st−n | g)

n∏
u=1

πg′ (at−u | st−u)
πg(at−u | st−u)

pemp(st | g)

pemp(st)
(4.51)

×
n∑
v=1

∇θ log πg′ (at−v | st−v) (4.52)

=Eτ

∑
g′

ρG

(
g
′
) pemp

(
st−n | g′

)
pemp(st−n | g)

n∏
u=1

πg′ (at−u | st−u)
πg(at−u | st−u)

pemp(st | g)

pemp(st)

n∑
v=1

∇θ log πg′ (at−v | st−v)

 .
(4.53)

Breaking off the g′ = g term, this gives:

T n3 =Eτ

[
ρG(g)

pemp(st | g)

pemp(st)

n∑
v=1

∇θ log πg(at−v | st−v)
]

(4.54)

+ Eτ

∑
g′ 6=g

ρG

(
g
′
) pemp

(
st−n | g′

)
pemp(st−n | g)

n∏
u=1

πg′ (at−u | st−u)
πg(at−u | st−u)

pemp(st | g)

pemp(st)

n∑
v=1

∇θ log πg′ (at−v | st−v)

 .
(4.55)
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The g′ = g term suggests we should further amend our info return by subtracting

the term pemp(g | st) ≡ ρG(g) pemp(st|g)
pemp(st)

, that is:

Rn
state(t) ≡

t+n∑
u=t+1

1− pemp(g | st) + log
pemp(su | g)

pemp(su)
. (4.56)

Putting it altogether, we have:

∇θJ
n
state(t) = (Rt + βRn

state(t))∇θ log πg(at | st) (4.57)

− β
∑
g′ 6=g

ρG

(
g
′
)
Rn

cf

(
t, g

′
)
∇θ log πg′ (at | st) , (4.58)

where we have the included the “counterfactual goal” return:

R̃n
cf

(
t, g

′
)
≡

t+n∑
v=t+1

pemp
(
sv−n | g′

)
pemp(sv−n | g)

n∏
u=1

πg′ (av−u | sv−u)
πg(av−u | sv−u)

pemp(sv | g)

pemp(sv)
. (4.59)

Including the effects of trajectories less than length n and adding a discount factor

as in the previous section, we finally amend the state and counterfactual info returns

to:

Rn
state(t) ≡

min(t+n,T )∑
u=t+1

γu−tI

(
1− pemp(g | st) + log

pemp(su | g)

pemp(su)

)
(4.60)

Rn
cf

(
t, g

′
)
≡

min(t+n,T )∑
v=t+1

γu−tI

pemp
(
sv−n | g′

)
pemp(sv−n | g)

n∏
u=1

πg′ (av−u | sv−u)
πg(av−u | sv−u)

pemp(sv | g)

pemp(sv)
. (4.61)

In the main text, we drop the n superscripts and include a value function baseline,

yielding:
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∇θJstate(t) =Astate(t)∇θ log πg(at | st)− β
∑
g′ 6=g

ρG

(
g
′
)
Rcf

(
t, g

′
)
∇θ log πg′ (at | st) ,

(4.62)

where Astate(t) ≡ Rt+βRstate(t)−Vg(st) is the advantage and Vg(st) is a goal-state

value function regressed toward Rt + βRstate(t).

4.C Experimental parameters and details

4.C.1 Simple spatial navigation

In order to allow Bob to integrate information about the goal over time and

remember it to guide future actions, we endow Bob with a recurrent neural network

(RNN) to process Alice’s state-action pairs. We used a gated recurrent unit (GRU)

(Cho et al. 2014) to which Alice’s state-action pairs are fed as a one-hot vector. We

chose to use a scalar core state for the GRU since it was simply tasked with tracking

Bob’s belief about one of two goals, and could thus assign each goal to a sign of the

GRU core state/output, which is what Bob chose to do in practice. The GRU output

zt = RNN
(
salice
t , aalice

t

)
was then concatenated with a one-hot representation of Bob’s

own state sbob
t and fed into a fully-connected, feed-forward layer of 128 units with

two readout heads: a policy head (a linear layer with |A| units followed by a softmax,

yielding abob
t ∼ πbob

(
sbob
t , zt

)
) and a value head (a single linear readout node, yielding

vt = V bob
(
sbob
t , zt

)
).
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Alice Bob
training time, in steps 100k 200k

max episode length, in steps 100 100
entropy bonus (logarithmically annealed from/to) .5, .005 .5, .01

learning rate (Adam) 2.5× 10−2 5× 10−5

weight on value function regression term .5 .5
reward discount γR .8 .8

p(s | g) approximation depth n (action, state) 0, 1 N/A
information discount γI N/A, 1 N/A

Table 4.1: Training parameters.

4.C.2 Key game

The only difference from the previous set of training parameters is that Alice now

trains longer (250k instead of 100k steps).

Alice Bob
training time, in steps 250k 200k

max episode length, in steps 100 100
entropy bonus (logarithmically annealed from/to) .5, .005 .5, .01

learning rate (Adam) 2.5× 10−2 5× 10−5

weight on value function regression term .5 .5
reward discount γR .8 .8

p(s | g) approximation depth n (action, state) 0, 1 N/A
information discount γI N/A, 1 N/A

Table 4.2: Training parameters.
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Chapter 5

Conclusion

5.1 Recap

In this thesis, we have applied the tools of information theory to developing useful

algorithms for supervised learning (chapter 2), unsupervised learning (chapter 3), and

reinforcement learning (chapter 4). We believe information theory is a natural set of

tools for machine learning problems for two primary reasons. First, its core concepts

of entropy and mutual information quantify uncertainty and correlation, respectively

- two crucial concepts in learning. Second, its chief accomplishments in measuring

the limits of compression and communication are directly useful in learning problems.

Compression is intimately related to the notion of choosing a minimal model, whereas

communication is a key concept in getting artificially intelligent agents to coordinate

with one another.

One might wander if the focus on DIB in this thesis is meant as an endorsement

of it over IB. In truth, when we originally developed the DIB, we found it difficult to

come up with cases in which one would be better off using IB. However, since then, it

has become abundantly clear that both are useful in different settings. One influential

paper on our point of view is Alemi et al. (2016). In that work, the authors used a
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scalable version of IB to train a neural network to categorize images, but to do so

with minimal encodings (in an IB sense). This both promoted better generalization

to unseen data, as well as resistance to so-called “adversarial attacks”, in which one

tries to fool a model into miscategorizing data with as small a modification to the

input as possible. In the case of these two goals, generalization (i.e. the avoidance of

overfitting) and adversarial robustness (i.e. reduced model sensitivity), information

seems like the natural constraint to add, and therefore IB is an appropriate choice. As

argued in chapters 2 and 3, DIB remains an appropriate choice when the size of some

representation of data is the constraint (such as in clustering), or when a deterministic

encoding is preferred.

In the next and final section, we discuss ongoing and future work applying and

scaling the tools of information theory to machine learning.

5.2 Future work

A PhD is long, but never long enough to do all of the things. As such, there are

many threads of the work discussed above that we are actively pursuing or interested

in pursuing soon.

5.2.1 IB and deep learning

Historically, one of the impediments to the practical usage of IB on realistic

problems is that one must have full access to the joint distribution P (X, Y ). This has

restricted IB to be applied only to small datasets where P (X, Y ) can be expected to

be estimated accurately, or in the jointly gaussian case where an analytic solution is

known (Chechik et al. 2005, Palmer et al. 2015). These restrictions also apply to DIB;

again, one must have full access to P (X, Y ) to proceed.
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Recently, however, multiple research groups (Achille and Soatto 2016, Alemi et al.

2016, Chalk et al. 2016) have simultaneously pointed out that one can scale IB

using techniques from variational inference to optimize the IB objective directly from

samples from P (X, Y ), rather than the distribution itself, in an approach dubbed

the “variational information bottleneck” (VIB) (Alemi et al. 2016). One does so by

parameterizing the encoder q(t | x) with a neural network and optimizing a bound on

the original IB objective. From a neural networks standpoint, this can be viewed as

a form of “information dropout” (Achille and Soatto 2016), encouraging the hidden

units to encode only as much information as necessary (and no more).

While these techniques were originally applied to IB, the application to DIB is

relatively straightforward. By parameterizing the DIB encoder with a neural network

and optimizing a variational bound on the DIB objective, one could also scale DIB.

Doing so would, for example, allow the application of our approach to clustering

(Chapter 3) to much larger datasets. More generally, such a variational DIB (or VDIB)

would allow applying the information dropout idea of Achille and Soatto (2016) to

neural networks with discrete latents.

5.2.2 Interpolating between IB and DIB

In Chapter 2, we derived the DIB solution by introducing a general cost function

that interpolates between the DIB and IB cost functions, solving to optimize that

general cost function, and then taking the limit of the solution towards the DIB

objective. The introduction of this generalized IB cost function was thus simply a tool

to obtain the DIB solution. However, the generalized IB solution is also a well-defined

algorithm in its own right, one that allows for interpolating between the soft clustering

of IB and the hard clustering of DIB. We have yet to thoroughly explore applications

of this interpolated method, but we speculate that it might, for example, be useful
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when one actually wants to use the DIB, but due to uncertainty caused by limited

data, one needs to “soften” the clustering assignments.

5.2.3 Improvements to information sharing in MARL

In Chapter 4, we introduced a method for encouraging agents to share/hide infor-

mation with other agents in order to cooperate/compete in a multi-agent reinforcement

learning (MARL) setting. This is an ongoing project and we are actively working on

generalizing the method to make it applicable in a wider variety of settings.

In the derivation of our Monte Carlo mutual information gradient estimators

(sections 4.A and 4.B), we employed an n-step approximation to p(s | g) in order to

calculate the gradient with respect to the policy parameters. After the submission of

this work, we noticed that a simpler derivation was possible that removed the need

for this approximation. The resulting algorithms are the same as the ones introduced

in Chapter 4, but with n set to the length of the episode, thus removing one free

parameter.

Our approach as presented requires Alice to know in advance whether she wishes

to cooperate or compete with Bob. However, in many realistic settings, one might not

know whether a new agent is a friend or a foe before interacting with them. One way

to generalize our approach to this setting is have Alice learn a parameterized family of

policies that include both cooperative and competitive ones. To do this, our approach

could be modified as follows: on each episode, a value of β (the information regularizer

weight) is chosen randomly a prior distribution p(β). On that episode, Alice is trained

to optimize her objective with that particular value of β. In addition, she receives as

input to her policy this value of β in a new channel alongside her state and the goal.

Over time, she learns to associate different values of β with different objectives. Then,

when Bob is introduced, her policy network is frozen, her objective is replaced with

a joint one describing her cooperative / competitive interactions with Bob (e.g. the
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sum / difference of their individual rewards), and she now receives control of β as a

parameter to optimize. By optimizing the joint reward over β, Alice chooses whether

to cooperate or compete online. Moreover, since she only has a single parameter to

optimize, she would learn far faster than if her entire policy was learned from scratch

through interaction with Bob.

We framed our approach as useful when we’d like to finish training Alice before

interacting with Bob. However, there is a continuum of situations between this, and

training with Bob in the loop in which our approach might also be useful. For example,

it might be useful to pre-train with information regularization, and then fine tune

Alice’s policy through interaction with Bob. In many situations, this would greatly

speed up convergence to a good policy. Moreover, even without pre-training, it might

be useful to include information regularization in a joint reward with Bob in order to

help “shape” the reward and promote cooperation / competition more quickly.

Finally, we tested our approach in simple grid world settings, where states, actions,

and goals are discrete. In many realistic settings, however, any of these might be

continuous, thus generalizing to these situations is a priority. There are 3 modifications

needed to deal with these scenarios: 1) the replacement of Alice’s tabular policy with a

parameterized one (e.g. with a neural network), 2) forming a variational approximation

to the “base policy” π̃0 ≈ π0 ≡
∑

g p(g) πg, an d 3) choosing a parameterization of

πg and π̃0 such that KL[πg | π0] is analytic (or at least tractable to approximate).

Working with continuous states requires modification 1, continuous goals 1 and 2, and

continuous actions all 3.

5.2.4 Synergy and MARL

Imagine you are a preschool teacher designing a class activity to promote your

students to communicate and work together. If you give them an activity in which

the task can be best completed alone, they have no incentive to work together. An
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ideal activity is one that requires them to share information with one another and

coordinate their actions in order to perform most effectively. If one could quantify

the extent to which a task requires this type of information-sharing, then one could

directly optimize the task for promoting teamwork.

Information theory provides just such a measure - synergy . The synergy between

N variables x = {xi}Ni=1 and y is defined as: Syn(x; y) = I(x, y) −∑i I(xi, y). In

other words, synergy measures how much more information the collective group of

variables x contain about y than the sum of the individual informations that each xi

has about y. Note that synergy is not necessarily symmetric: Syn(x; y) 6= Syn(y;x).

Synergy also can be positive (the xis combine synergistically), negative (the xis are

redundant), or zero (the xis are additive).

In our above example, imagine that there are N children each given a message

xi, and they must collectively infer the identity y of an object in the classroom. For

narrowing down the number of potential objects to n, the students receive reward

equal to log(n). In other words, they are rewarded for the reduction in entropy over the

identity of the object (assuming uniform uncertainty over the original and remaining

objects). Points are divided evenly among the students who together put forth an

answer, and multiple groups can put forth an answer (points are divided within a

team, but not between them). Thus, for group i with mi students and a reduction

to ni objects, each student in group i receives logni

mi
points. If the all of the messages

are the same (i.e. xi = xj for all i, j), then there is no incentive to cooperate - the

students do better guessing on their own. If the messages are different but combine

additively (Syn(x; y) = 0), then the students should be agnostic between cooperating

or not. But if the messages combine synergistically (Syn(x; y) > 0), then the students

will do better to cooperate. Thus, as the teacher, one can quantitatively optimize the

messages given to the students to promote cooperation.
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We are currently working out the details of the task structure to test this idea,

but outline it here for its connection to the content of Chapter 4.
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